Aedes aegypti has developed evolution-driven adaptations for surviving in the domestic human habitat. Several trap models have been designed considering these strategies and tested for monitoring this efficient vector of Dengue. Here, we report a real-scale evaluation of a system for monitoring and controlling mosquito populations based on egg sampling coupled with geographic information systems technology. The SMCP-Aedes, a system based on open technology and open data standards, was set up from March/2008 to October/2011 as a pilot trial in two sites of Pernambuco -Brazil: Ipojuca (10,000 residents) and Santa Cruz (83,000), in a joint effort of health authorities and staff, and a network of scientists providing scientific support. A widespread infestation by Aedes was found in both sites in 2008–2009, with 96.8%–100% trap positivity. Egg densities were markedly higher in SCC than in Ipojuca. A 90% decrease in egg density was recorded in SCC after two years of sustained control pressure imposed by suppression of >7,500,000 eggs and >3,200 adults, plus larval control by adding fishes to cisterns. In Ipojuca, 1.1 million mosquito eggs were suppressed and a 77% reduction in egg density was achieved. This study aimed at assessing the applicability of a system using GIS and spatial statistic analysis tools for quantitative assessment of mosquito populations. It also provided useful information on the requirements for reducing well-established mosquito populations. Results from two cities led us to conclude that the success in markedly reducing an Aedes population required the appropriate choice of control measures for sustained mass elimination guided by a user-friendly mosquito surveillance system. The system was able to support interventional decisions and to assess the program’s success. Additionally, it created a stimulating environment for health staff and residents, which had a positive impact on their commitment to the dengue control program.
Stroke is the second cause of death and the leading cause of disability worldwide. The loss or impairment of ambulation is one of the most devasting sequelae of stroke. Restoration of gait can be considered the main goal of rehabilitation after stroke. Conventional interventions tend to be tedious, providing few opportunities to increase the difficulty level of the proposed tasks and do not encourage adaptive postural reactions. There is evidence to support the use of virtual reality for the promotion of walking in people with sequelae of stroke. Virtual reality is a feature that has been used in clinical practice, however, the details on how to use this instrument must be set according to the therapeutic goals.
Automatic analysis of locomotion in studies of behavior and development is of great importance because it eliminates the subjective influence of evaluators on the study. This study aimed to develop and test the reproducibility of a system for automated analysis of locomotor activity in rats. For this study, 15 male Wistar were evaluated at P8, P14, P17, P21, P30 and P60. A monitoring system was developed that consisted of an open field of 1m in diameter with a black surface, an infrared digital camera and a video capture card. The animals were filmed for 2 min as they moved freely in the field. The images were sent to a computer connected to the camera. Afterwards, the videos were analyzed using software developed using MATLAB® (mathematical software). The software was able to recognize the pixels constituting the image and extract the following parameters: distance traveled, average speed, average potency, time immobile, number of stops, time spent in different areas of the field and time immobile/number of stops. All data were exported for further analysis. The system was able to effectively extract the desired parameters. Thus, it was possible to observe developmental changes in the patterns of movement of the animals. We also discuss similarities and differences between this system and previously described systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.