High throughput plant phenotyping is the advanced scientific approach for rapid phenotyping of plant traits, especially high consumable grains or crops, which is designed to process a high volume of data in a short time for plant breeders and cultivars to utilize. Detection and counting of crop traits such as plants, fruits, wheat or rice spikes, sorghum head, and plant diseases is more advanced research in this field, where real-world data are collected using aerial and land-based imaging platforms equipped with a variety of geospatial sensors, and their statistical analysis is conducted using Artificial Intelligence (AI) and Deep Learning-based solutions. In this paper, we contributed to solving such a challenge of phenotyping by detecting and counting wheat spikes from land-based imaging by applying a Region-based Convolutional Neural Network (CNN) model. Our method employs the use of CNN to extract features from the imaging platform and the learning model is trained to detect and count wheat spikes in field images based on these extracted features. Using the publicly available SPIKE dataset to train and test our model, our proposed method achieved 98% average precision and 91% average F1 score on the test set. Our results show a significant improvement of 2.9% and 11.2% in detection accuracy as well as 1% and 3% in average precision metric over state-of-the-art Faster Regionbased Convolutional Neural Network (Faster-RCNN), and RetinaNet, respectively, and have the potential to significantly benefit plant breeders by facilitating the selection of wheat varieties with high yields. DUJASE Vol. 7 (2) 21-30, 2022 (July)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.