Machine Learning is one of the methods used for task prediction. In the diabetic’s research field, the application of machine learning is emerging since the advantages of approximation on the prediction technique has significantly given insight for many health practitioners. Machine Learning is utilized in order to handle the uncontrollable risk factor by finding a relation between such a risk factor trough prediction. This study aims to review recent machine learning models that have been used in diabetes prediction with respect to the risk factors in order to prevent diabetes. This study compares the performance of the model by justified the accuracy as the baseline to evaluate the model. The result of this review shows that the Random Forest and Support Vector Machine are the most popular technique among researcher. Moreover, from this study, it can be seen that Type 2 Diabetes Mellitus (T2DM) has been a concern by researchers since the incidence of diabetes was increasing in worldwide today that happened from an uncontrollable risk factor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.