International audienceThe Eocene Hecho Group turbidite system of the Ainsa-Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity-bounded tectonostratigraphic units (TSU), consisting of quartz-rich and feldspar-poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU-2, whereas calclithites and hybrid arenites occur in the overlying TSU-3, TSU-4 and TSU-5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold-and-thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz-rich and feldspar-poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar-rich and, to some extent, rock fragments-rich sandstones), thrust-and-fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono-stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins
Petrographic examinations and electron microprobe analyses of Proterozoic granitic rocks, SE Sweden aimed to characterize and unravel the mechanisms and conditions of plagioclase alterations. These alterations include saussuritization, albitization and replacement of plagioclase by K-feldspar. The hydrothermal alterations, which are inferred to have occurred at ca. 250-4008C, resulted in concomitant formation of Alrich titanite, epidote, calcite, pumpellyite, prehnite and iron oxides. Replacement of plagioclase by K-feldspar occurs in red-stained zones, which have developed close to thin fractures owing to the precipitation of tiny Fe-oxide pigment particles within the altered plagioclase, whereas saussuritized plagioclase has less systematic spatial relationships to these fractures. Albitization of plagioclase occurred in rocks that are poor in biotite compared to rocks that suffered extensive saussuritization. The chemical and textural characterization of various types of plagioclase alterations allows elucidation of the granitic hydrothermal systems. Features of feldspar alteration in the granitic rocks are similar to those encountered in feldspathic sandstones and should hence be considered in studies on diagenetic changes of siliciclastic successions during basin evolution.
Samples from the Amposta Marino C2 well (Amposta oil field) have been investigated in order to understand the origin of fractures and porosity and to reconstruct the fluid flow history of the basin prior, during and after oil migration. Three main types of fracture systems and four types of calcite cements have been identified. Fracture types A and B are totally filled by calcite cement 1 (CC1) and 2 (CC2), respectively; fracture type A corresponds to pre-Alpine structures, while type B is attributed to fractures developed during the Alpine compression (late Eocene-early Oligocene). The oxygen, carbon and strontium isotope compositions of CC2 are close to those of the host-rock, suggesting a high degree of fluid-rock interaction, and therefore a relatively closed palaeohydrogeological system. Fracture type C, developed during the Neogene extension and enlarged by subaerial exposure, tend to be filled with reddish (CS3r) and greenish (CS3g) microspar calcite sediment and blocky calcite cement type 4 (CC4), and postdated by kaolinite, pyrite, barite and oil. The CS3 generation records lower oxygen and carbon isotopic compositions and higher 87 Sr ⁄ 86 Sr ratios than the host-limestones. These CS3 karstic infillings recrystallized early within evolved-meteoric waters having very little interaction with the host-rock. Blocky calcite cement type 4 (CC4 generation) has the lowest oxygen isotope ratio and the most radiogenic 87 Sr ⁄ 86 Sr values, indicating low fluid-rock interaction. The increasingly open palaeohydrogeological system was dominated by migration of hot brines with elevated oxygen isotope ratios into the buried karstic system. The main oil emplacement in the Amposta reservoir occurred after the CC4 event, closely related to the Neogene extensional fractures. Corrosion of CC4 (blocky calcite cement type 4) occurred prior to (or during) petroleum charge, possibly related to kaolinite precipitation from relatively acidic fluids. Barite and pyrite precipitation occurred after this corrosion. The sulphur source associated with the late precipitation of pyrite was likely related to isotopically light sulphur expelled, e.g. as sulphide, from the petroleum source rock (Ascla Fm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.