Hyperon decays present a promising alternative for extracting |𝑉 𝑢𝑠| from lattice QCD combined with experimental measurements. Currently |𝑉 𝑢𝑠| is determined from the kaon decay widths and a lattice calculation of the associated form factor. In this proceeding, I will present preliminary work on a lattice determination of the hyperon mass spectrum. I will additionally summarize future goals in which we will calculate the hyperon transition matrix elements, which will provide an alternative means for accessing |𝑉 𝑢𝑠|. This work is based on a particular formulation of SU(2) chiral perturbation theory for hyperons; determining the extent to which this effective field theory converges is instrumental in understanding the limits of its predictive power, especially since some hyperonic observables are difficult to calculate near the physical pion mass (e.g., hyperonto-nucleon form factors), and thus the use of heavier than physical pion masses is likely to yield more precise results when combined with extrapolations to the physical point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.