The cosmological constant , i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well-known problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter, / H. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey, and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.
We investigate the observational viability of a class of cosmological models in which the vacuum energy density decays linearly with the Hubble parameter, resulting in a production of cold dark matter particles at late times. Similarly to the flat ΛCDM case, there is only one free parameter to be adjusted by the data in this class of Λ(t)CDM scenarios, namely, the matter density parameter. To perform our analysis we use three of the most recent SNe Ia compilation sets (Union2, SDSS and Constitution) along with the current measurements of distance to the BAO peaks at z = 0.2 and z = 0.35 and the position of the first acoustic peak of the CMB power spectrum. We show that in terms of χ 2 statistics both models provide good fits to the data and similar results. A quantitative analysis discussing the differences in parameter estimation due to SNe light-curve fitting methods (SALT2 and MLCS2k2) is studied using the current SDSS and Constitution SNe Ia compilations. A matter power spectrum analysis using the 2dFGRS is also performed, providing a very good concordance with the constraints from the SDSS and Constitution MLCS2k2 data.PACS numbers: 98.80. Es, 95.35.+d, 98.62.Sb
Dark energy is the invisible fuel that seems to drive the current acceleration of the Universe. Its presence, which is inferred from an impressive convergence of high-quality observational results along with some sucessful theoretical predictions, is also supported by the current estimates of the age of the Universe from dating of local and high-z objects. In this work we study observational constraints on the dark energy equation of state (w) from lookback time measurements of high-z galaxies, as recently published by the Gemini Deep Deep Survey (GDDS). To build up our lookback time sample from these observations we use 8 high-z galaxies in the redshift interval 1.3 ≤ z ≤ 2.2 and assume the total expanding age of the Universe to be t obs 0 = 13.6 +0.4 −0.3 Gyr, as obtained from current cosmic microwave background data. We show that these age measurements are compatible with values of w close to −1, although there is still space for quintessence (w > −1) and phantom (w < −1) behaviors. To break possible degeneracies in the Ω m − w plane, we also discuss the bounds on this parametric space when GDDS lookback time measurements are combined with the most recent SNe Ia, CMB, and LSS data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.