The Heat Balance Method (HBM) is used for estimating the heating and cooling loads encountered in a vehicle cabin. A load estimation model is proposed as a comprehensive standalone model which uses the cabin geometry and material properties as the inputs. The model is implemented in a computer code applicable to arbitrary driving conditions. Using a lumped-body approach for the cabin, the present model is capable of estimating the thermal loads for the simulation period in real-time. Typical materials and a simplified geometry of a specific hybrid electric vehicle are considered for parametric studies. Two different driving and ambient conditions are simulated to find the contribution and importance of each of the thermal load categories. The Supplemental Federal Test Procedure (SFTP) standard driving cycle is implemented in the simulations for two North American cities and the results are compared. It is concluded that a predictive algorithm can be devised according to the driving conditions, vehicle speed, orientation, and geographical location. By using this model, the pattern of upcoming changes in the comfort level can be predicted in real-time in order to intelligently reduce the overall AC power consumption while maintaining driver thermal comfort.
Simulating the real-time thermal behavior of rooms subject to air conditioning (AC) and refrigeration is a key to cooling load calculations. A well-established resistance–capacitance (RC) model is employed that utilizes a representative network of electric resistors and capacitors to simulate the thermal behavior of such systems. A freezer room of a restaurant is studied during its operation, and temperature measurements are used for model validation. Parametric study is performed on different properties of the system. It is shown that a reduction of 20% in the walls thermal resistivity can increase the energy consumption rate by 15%. The effect of set points on the number of compressor starts/stops is also studied, and it is shown that narrow set points can result in a steady temperature pattern in exchange for a high number of compressor starts/stops per hour. The proposed technique provides an effective tool for facilitating the thermal modeling of air conditioned and refrigerated rooms. Using this approach, engineering calculations of cooling load can be performed with outstanding simplicity and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.