The market for coconut water causes environmental problems as it is one of the major agro-industrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m3.d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m3 of biogas or 130 KWh per m3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity.
The market for coconut water causes environmental problems as it is one of the major agroindustrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m 3 •d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m 3 of biogas or 130 KWh per m 3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.