Quantum computing devices are believed to be powerful in solving the prime factorization problem, which is at the heart of widely deployed public-key cryptographic tools. However, the implementation of Shor's quantum factorization algorithm requires significant resources scaling linearly with the number size; taking into account an overhead that is required for quantum error correction the estimation is that 20 millions of (noisy) physical qubits are required for factoring 2048-bit RSA key in 8 hours. Recent proposal by Yan et. al. claims a possibility of solving the factorization problem with sublinear quantum resources. As we demonstrate in our work, this proposal lacks systematic analysis of the computational complexity of the classical part of the algorithm, which exploits the Schnorr's lattice-based approach. We provide several examples illustrating the need in additional resource analysis for the proposed quantum factorization algorithm.
Quantum many-body control is among most challenging problems in quantum science, due to computational complexity of related underlying problems. We propose an efficient approach for solving a class of control problems for many-body quantum systems, where time-dependent controls are applied to a sufficiently small subsystem. The approach is based on a tensor-networks-based scheme to build a low-dimensional reduced-order model of the subsystem's non-Markovian dynamics. Simulating dynamics of such a reduced-order model, viewed as a "digital twin" of the original subsystem, is significantly more efficient, which enables the use of gradient-based optimization toolbox in the control parameter space. We validate the proposed method by solving control problems for quantum spin chains. In particular, the approach automatically identifies sequences for exciting the quasiparticles and guiding their dynamics to recover and transmit information. Additionally, when disorder is induced and the system is in the many-body localized phase, we find generalized spin-echo sequences for dynamics inversion, which show improved performance compared to standard ones. Our approach by design takes advantage of non-Markovian dynamics of a subsystem to make control protocols more efficient, and, under certain conditions can store information in the rest of the many-body system and subsequently retrieve it at a desired moment of time. We expect that our results will find direct applications in the study of many-body systems, in probing non-trivial quasiparticle properties, as well as in development control tools for quantum computing devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.