Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.
Gold/Palladium nanoparticles were fabricated by inert-gas condensation on a sputtering reactor. With this method, by controlling both the atmosphere on the condensation chamber and the magnetron power, it was possible to produce nanoparticles with a high degree of monodispersity in size. The structure and size of the Au/Pd nanoparticles were determined by mass spectroscopy, and confirmed by atomic force microscopy and electron transmission microscopy measurements. The chemical composition was analyzed by X-ray microanalysis. From these measurements we confirmed that with the sputtering technique we are able to produce particles of 1, 3, and 5 nm on size, depending on the choice of the synthesis conditions. From TEM measurements made both in the regular HREM, as well as in STEM-HAADF mode, we found that the particles are icosahedral in shape, and the micrographs show no evidence of a core-shell structure, in contrast to what is observed in the case of nanoparticles prepared by chemical synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.