This work presents a new methodology to estimate the motion-induced standard deviation and related turbulence intensity on the retrieved horizontal wind speed by means of the velocity-azimuth-display algorithm applied to the conical scanning pattern of a floating Doppler lidar. The method considers a ZephIR™300 continuous-wave focusable Doppler lidar and does not require access to individual line-of-sight radial-wind information along the scanning pattern. The method combines a software-based velocity-azimuth-display and motion simulator and a statistical recursive procedure to estimate the horizontal wind speed standard deviation—as a well as the turbulence intensity—due to floating lidar buoy motion. The motion-induced error is estimated from the simulator’s side by using basic motional parameters, namely, roll/pitch angular amplitude and period of the floating lidar buoy, as well as reference wind speed and direction measurements at the study height. The impact of buoy motion on the retrieved wind speed and related standard deviation is compared against a reference sonic anemometer and a reference fixed lidar over a 60-day period at the IJmuiden test site (the Netherlands). Individual case examples and an analysis of the overall campaign are presented. After the correction, the mean deviation in the horizontal wind speed standard deviation between the reference and the floating lidar was improved by about 70%, from 0.14 m/s (uncorrected) to −0.04 m/s (corrected), which makes evident the goodness of the method. Equivalently, the error on the estimated turbulence intensity (3–20 m/s range) reduced from 38% (uncorrected) to 4% (corrected).
This work provides a signal-processing and statistical-error analysis methodology to assess key performance indicators for a floating Doppler wind lidar. The study introduces the raw-to-clean data processing chain, error assessment indicators and key performance indicators, as well as two filtering methods at post-processing level to alleviate the impact of angular motion and spatial variability of the wind flow on the performance indicators. Towards this aim, the study mainly revisits horizontal wind speed (HWS) and turbulence intensity measurements with a floating ZephIR 300 lidar buoy during a 38 day nearshore test campaign in Pont del Petroli (Barcelona). Typical day cases along with overall statistics for the whole campaign are discussed to illustrate the methodology and processing tools developed.Peer ReviewedPostprint (author's final draft
The standard deviation of the Horizontal Wind Speed as a proxy of wind turbulence is used to compare the apparent wind turbulence measured by an offshore floating Doppler lidar to the one measured by a fixed lidar on a metmast. We use statistical analysis based on clustering the horizontal wind speed measured by the floating lidar as well as buoy angular amplitude and period under the approximation of harmonic motion. Three scenarios with different wave and wind conditions are discussed from the IJmuiden's test campaign (North Sea.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.