We present the performance characteristics of a high-sensitivity radio receiver for the frequency band 0.5-470 kHz, known as the Low Frequency Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education, or LF AWESOME. The receiver is an upgraded version of the VLF AWESOME, completed in 2004, which provided high sensitivity broadband radio measurements of natural lightning emissions, transmitting beacons, and radio emissions from the near-Earth space environment. It has been deployed at many locations worldwide and used as the basis for dozens of scientific studies. We present here a significant upgrade to the AWESOME, in which the frequency range has been extended to include the LF and part of the medium frequency (MF) bands, the sensitivity improved by 10-25 dB to be as low as 0.03 fT/ √ Hz, depending on the frequency, and timing error reduced to 15-20 ns range. The expanded capabilities allow detection of radio atmospherics from lightning strokes at global distances and multiple traverses around the world. It also allows monitoring of transmitting beacons in the LF/MF band at thousands of km distance. We detail the specification of the LF AWESOME and demonstrate a number of scientific applications. We also describe and characterize a new algorithm for minimum shift keying demodulation for VLF/LF transmitters for ionospheric remote sensing applications.
We present observations from 11 very low frequency (VLF)/low‐frequency (LF) receivers across the continental United States during the 21 August 2017 “Great American Solar Eclipse.” All receivers detected transmissions from VLF/LF beacons below 50 kHz, while seven also recorded LF beacons above 50 kHz, yielding dozens of individual transmitter‐receiver radio links. Our observations show two separable superimposed signatures: (1) a gradual rise and fall in signal levels visible on almost all paths as the eclipse advances and then declines, as VLF attenuation is reduced by the changing ionosphere under an eclipsed Sun, and (2) direct reflective scattering off the narrow 100‐km‐wide totality spot, observed more uniquely when the transmitter or receiver, if not both, are relatively close to the totality spot.
We introduce a method to diagnose and track the D region ionosphere (60–100 km). This region is important for long‐distance terrestrial communication and is impacted by a variety of geophysical phenomena, but it is traditionally very difficult to detect. Modern remote sensing methods used to study the D region are predominately near the very low frequency (VLF, 3–30 kHz) band, with some work also done in the high‐frequency and very high frequency bands (HF/VHF, 3–300 MHz). However, the frequency band between VLF and HF has been largely ignored as a diagnostic tool for the ionosphere. In this paper, we evaluate the use of 300 kHz radio reflections as a diagnostic tool for characterizing the D region of the ionosphere. We present radio receiver data, analyze diurnal trends in the signal from these transmitters, and identify ionospheric disturbances impacting LF/MF propagation. We find that 300 kHz remote sensing may allow a unique method for D region diagnostics compared to both the VLF and HF/VHF frequency bands, due to a more direct ionospheric reflection coefficient calculation method with high temporal resolution without the use of forward modeling.
We present a method of characterizing the horizontal and vertical electron density roughness of the D-region ionosphere using Nationwide Differential Global Position System (NDGPS) transmitters as low-frequency (LF; 30-300 kHz) and medium-frequency (MF; 300-3,000 kHz) signals of opportunity. The horizontal roughness is characterized using an amplitude cross-correlation method, which yields the correlation length scale metric. The vertical roughness is characterized using a differential phase height, which is needed to mitigate the effects of transmitter phase instability. The ranges and typical values of roughness metrics are investigated using data from several field campaign measurements. Finally, the roughness metrics for an NDGPS transmitter and very low frequency (VLF) transmitter are compared. It is found that the roughness detected by the VLF transmitter is significantly smoother and demonstrates the utility of this method to complement traditional VLF measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.