A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ∼15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ∼350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
Abstract. We review millimeter interferometric phase variations caused by variations in the precipitable water vapor content of the troposphere, and we discuss techniques proposed to correct for these variations. We present observations with the Very Large Array (VLA) at 22 and 43 GHz designed to test these techniques. We find that both the fast switching and paired array calibration techniques are effective at reducing tropospheric phase noise for radio interferometers. In both cases, the residual rms phase fluctuations after correction are independent of baseline length for b > b eff-These techniques allow for diffraction-limited imaging of faint sources on arbitrarily long baselines at millimeter wavelengths. We consider the technique of tropospheric phase correction using a measurement of the precipitable water vapor content of the troposphere via a radiometric measurement of the brightness temperature of the atmosphere. Required sensitivities range from 20 mK at 90 GHz to 1 K at 185 GHz for the millimeter array (MMA) and to 120 mK for the VLA at 22 GHz. The minimum gain stability requirement is 200 at 185 GHz at the MMA, assuming that the astronomical receivers are used for radiometry. This increases to 2000 for an uncooled system. The stability requirement is 450 for the cooled system at the VLA at 22 GHz. To perform absolute radiometric phase corrections also requires knowledge of the tropospheric parameters and models to an accuracy of a few percent. It may be possible to perform an "empirically calibrated" radiometric phase correction, in which the relationship between fluctuations in brightness temperature differences and fluctuations in interferometric phases is calibrated by observing a strong celestial calibrator at regular intervals. A number of questions remain concerning this technique, including the following: (1) Over what timescale and distance will this technique allow for radiometric phase corrections when switching between the source and the calibrator? (2) How often will calibration of the r• ms -qbrm s relationship be required?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.