In this paper, we propose to use a discrete wavelet transform with a singular wavelet to isolate the periodic component from the signal. Traditionally, it is assumed that the validity condition must be met for a basic wavelet (the average value of the wavelet is zero). For singular wavelets, the validity condition is not met. As a singular wavelet, you can use the Delta-shaped functions, which are involved in the estimates of Parzen-Rosenblatt, Nadaraya-Watson. Using singular value of a wavelet is determined by the discrete wavelet transform. This transformation was studied earlier for the continuous case. Theoretical estimates of the convergence rate of the sum of wavelet transformations were obtained; various variants were proposed and a theoretical justification was given for the use of the singular wavelet method; sufficient conditions for uniform convergence of the sum of wavelet transformations were formulated. It is shown that the wavelet transform can be used to solve the problem of nonparametric approximation of the function. Singular wavelet decomposition is a new method and there are currently no examples of its application to solving applied problems. This paper analyzes the possibilities of the singular wavelet method. It is assumed that in some cases a slow and fast component can be distinguished from the signal, and this hypothesis is confirmed by the numerical solution of the real problem. A similar analysis is performed using a parametric regression equation, which allows you to select the periodic component of the signal. Comparison of the calculation results confirms that nonparametric approximation based on singular wavelets and the application of parametric regression can lead to similar results.
Any object can have many implementations in the form of digital images and any digital image can be processed many times increasing or decreasing accuracy and reliability. Digital colorimetry faces the need to work out issues of ensuring accuracy, metrological traceability and reliability. The purpose of this work was to generalize approaches to the description of multidimensional quantized spaces and show the possibilities of their adaptation to digital colorimetry. This approach will minimize the private and global risks in measurements.For color identification digital colorimetry uses standard color models and spaces. Most of them are empirical and are improved during the transition from standard to real observation conditions taking into account the phenomena of vision and the age of observers. From the point of view of measurement, a digital image can be represented by a combinatorial model of an information and measurement channel with the appearance of the phenomenon of a color covariance hypercube requiring a significant amount of memory for data storage and processing. The transition from the covariance hypercube to high-dimensional matrices and tensors of the first, second and higher ranks provides the prospect of optimizing the color parameters of a digital image by the criterion of information entropy.Tensor calculus provides opportunities for expanding the dynamic range in color measurements describing multidimensional vector fields and quantized spaces with indexing tensors and decomposing them into matrices of low orders.The proposed complex approach based on tensor calculus. According to this approach the color space is a set of directed vector fields undergoing sampling, quantization and coding operations. Also it is a dynamic open system exchanging information with the environment at a given level and to identify color with specified levels of accuracy, reliability, uncertainty and entropy.
To represent local displacement fields in the problem of the steady-state growth of a crack, which contains a plate of incompressible material, the strain intensity formula is used in the form of a polynomial of the second degree. The case of plane deformation for an elastoplastic material is considered. The solution is obtained by the method of asymptotic expansions. Numerical analysis is carried out for the first term of the expansion. The aim of the work is the process of obtaining analytical solutions to applied problems of the theory of plasticity: finding the components of stress and strain tensors. The paper considers a variant of the method of asymptotic expansions and its application for the problem of the distribution of the stress-strain state in an elastoplastic specimen with a crack. The method of asymptotic expansions has some advantages over the numerical approach in studying the stress-strain state in the vicinity of a crack. It allows to establish exact quantitative relationships between the radial component, the angle, and the components of the stress and strain tensor. Another advantage of this method is the possibility of compiling the mechanical characteristics of an object at the design stage. A system of differential equations has been developed that contains V0 and its derivatives up to the third order. An example of stress distribution in the vicinity of a crack tip in a steel sample, obtained in a computer system by a numerical method, is given. The deformation diagram has been constructed for the material steel 40. The research results can be used to construct stress and strain fields in the vicinity of a crack, as well as to predict the further direction of crack development.
Modern imaging devices make it possible to solve a complex of technical applied problems that require the synthesis and analysis of computer processing methods using threshold binarization, image classification, clustering, and the use of machine learning to determine areas of interest. Thus, segmentation algorithms are widely used for processing medical images. Computer technologies are used for the functioning of the intellectual environment, which allows to analyze the state of human health. The development of microelectronics makes it possible to increase the complexity of the applied image processing algorithms used to solve applied engineering problems. The issues of segmentation, pattern recognition, description and presentation of details, morphological analysis of images obtained by industrial equipment are widely discussed in the literature. For example, theories of optical signal processing taking into account interference, issues of image perception and analysis are presented in detail in domestic and foreign literature. The paper describes the developed algorithm for localizing a car license plate, implemented in the Wolfram Mathematica system. First, the region of interest is determined, isolated from the rest of the image for its subsequent processing. An image representation is implemented using an affine transformation. Further segmentation of the characters on the license plate allows the characters to be identified. In the Mathematica system, a program code for the car license plate localization algorithm for its further recognition has been developed. The solution to the problem was obtained using the step-by-step application of the built-in and user-defined functions of the Wolfram Mathematica system. The algorithm has been tested on a representative sample of images. The average error did not exceed 10 %, which is in line with modern industrial image processing algorithms. The resulting car license plate identification algorithm can be used in digital devices to automatically determine and further image processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.