In 2015, the Worldatlas recorded 50 countries whose source of income is fossil fuel and its derivatives. Surprisingly, these countries solely depend on this source of energy up to 100% (Omar, Qatar, Kuwait and Saudi Arabia) because of technology improvement. It's so sadden that apart from its adverse effect on the economics of the countries, fossil fuels harmful effects on the universe cannot be overlooked. Meanwhile, the use of renewable energy as a replacement for fossil fuel and its derivatives are faced by the high oil price, high cost of investment for alternative energy, and unfathomed electricity prices. This research work evaluates desirability of making use of alternative source of energy sources by making use of biomass oil over the use of fossil fuel and its derivatives for electricity generation.Lucky nut is an agricultural non edible seed that was employed as raw material for biofuel production. The non-edible oil was extracted from the seeds and the oil was further converted to Lucky nut biofuel via a heterogeneous based catalyst produced from calcinated pearl spar. For modelling and optimization, design expert coupled with genetic algorithms were used to generate experimental designs so as to correlate the variable factors considered for production.The extraction of Lucky nut seed revealed the optimum production yield of 50.80% (v/v) and the oil is highly unsaturated. Energy Dispersive X-ray Fluorescence Spectrophotometer analyses and scanning electron microscope (SEM) of the calcined catalyst obtained from pearl spar showed the major component found in the pearl spar was K with relative abundance of 58.48%, which favoured the yield of Lucky nut biodiesel (91.00% (v/v)). Based on predicted values, the optimum validated Lucky nut biodiesel by RSMED and ANNED were 89.68% (v/v) and 92.87% (v/v), respectively. Produced properties of biofuel conformed to the biofuel standard.The study concluded that Lucky nut seed is a good source of oil, and its transformation to alternative fuel via a using calcined catalyst proved its fitness as a replacement for fossil fuel.
Background
The energy requirements are globally on a rapid escalation, as technology advances, which is also true for a developing country like Nigeria, which is dependent on fossil fuels and its derivatives. Apart from its adverse effect on its economy, it has also negative impacts on the health and the environment, in general. However, investments in renewable energy are faced by the competitive oil prices, the very high investment cost for renewable energy, and high local electricity prices. This paper appraises the attractiveness of investing in renewable energy sources over the continued use of non-edible oil for electricity generation.
Methods
This paper explores the application of biomass seed oil to produce a renewable fuel (biodiesel) using heterogeneous base catalyst. Meanwhile, two-step processes were employed to produce the biofuel. In the first step (esterification), the acid value of the oil was reduced to the recommended limit (FFA ≤ 1.5) using H2SO4, while in the second step (transesterification), the catalyst calcination of grounded Brette Pearl Spar Mable (BPSM) pre-soaked in methanol was used as a biobase for biodiesel production. For the optimization, minitab response surface (MRS) and artificial neural network (ANN) were employed to model and optimize the process variables responsible for the optimum production of the oil and the biodiesel.
Results
The result presented showed that T. peruviana seed was found to be rich in oil with an average yield of 44.00% (w/w), and the oil was highly unsaturated with a high FFA. The maximum experimental biodiesel yield obtained was 86.00% at a catalyst amount of 4 g, a reaction time of 70 min, and a methanol/oil ratio of 0.1(v/v). This result was validated in triplicate under the same conditions, which yielded 85.70% (v/v) for MRS and 85.98% (v/v) for ANN. Furthermore, the optimization results also indicated that the p values (p < 0.05) of the model terms were significant, and the accuracy of the models achieved by MRS and ANN based on R2 depict that both optimization tools gave good predictions of R2 (MRS: R2 = 99.98% and ANN: R2 = 99.97%). The properties of the biodiesel, as described in other earlier reports using the same feedstock with different catalysts, indicated that the produced biodiesel had properties which agreed to those reported in the literature.
Conclusions
T. peruviana seed has proved to be a good biomass raw material for oil production, and its conversion to biofuel using a heterogeneous biobase catalyst showed its suitability as a renewable environmental friendly fuel. Government should invest in more sustainable sources of energy by imposing law for the use of non-edible oil or decreasing the price of electricity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.