Data mining techniques have been widely used to mine knowledgeable information from medical data bases. In data mining classification is a supervised learning that can be used to design models describing important data classes, where class attribute is involved in the construction of the classifier. Nearest neighbor (KNN) is very simple, most popular, highly efficient and effective algorithm for pattern recognition.KNN is a straight forward classifier, where samples are classified based on the class of their nearest neighbor. Medical data bases are high volume in nature. If the data set contains redundant and irrelevant attributes, classification may produce less accurate result. Heart disease is the leading cause of death in INDIA. In Andhra Pradesh heart disease was the leading cause of mortality accounting for 32%of all deaths, a rate as high as Canada (35%) and USA.Hence there is a need to define a decision support system that helps clinicians decide to take precautionary steps. In this paper we propose a new algorithm which combines KNN with genetic algorithm for effective classification. Genetic algorithms perform global search in complex large and multimodal landscapes and provide optimal solution. Experimental results shows that our algorithm enhance the accuracy in diagnosis of heart disease.
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.