Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm(-3)) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm(-3)) at 20, 40 and 60°C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, (°)Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60°C for 10 min, and the microbial population was completely inactivated at 60°C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60°C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.
The effects of sodium selenite (SS) and selenium yeast (SY) alone and in combination (MS) on the selenium (Se) content, antioxidant enzyme activities (AEA), total antioxidant capacity (TAC), and oxidative stability of chicken breast meat were investigated. The results showed that the highest (p < 0.05) glutathione peroxidase (GSH-Px) activity was found in the SS-supplemented chicken breast meat; however, SY and MS treatments significantly increased (p < 0.05) the Se content and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and TAC, but decreased (p < 0.05) the malondialdehyde (MDA) content at 42 days of age. Twelve days of storage at 4 °C decreased (p < 0.05) the activity of the GSH-Px, but CAT, T-SOD, and TAC remained stable. SY decreased the lipid oxidation more effectively in chicken breast meat. It was concluded that SY and MS are more effective than SS in increasing the AEA, TAC, and oxidative stability of chicken breast meat.
Summary
This study was carried out to investigate the effect of sonication on physicochemical parameters and microorganisms of pear juice. Ultrasound processing of fresh pear juice was done at fixed amplitude [70% (500 W) and frequency (25 kHz) for 0, 15, 30, 45 and 60 min at 25 °C. Total soluble solids, pH, titratable acidity and Ca and Mn remained stable, while the cloud value, ascorbic acid, total phenols, total flavonoids, total antioxidant capacity, sugar contents and Na, K, Fe and Mg showed a significant increase. Decreases in microbial population and P and Cu were also observed. It may be inferred that ultrasound processing for 60 min exhibited optimum results in terms of physicochemical and microbial quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.