The plastic deformation behavior of the high-entropy alloy Ag0.5CoCrCuFeNi produced in an argon-arc melt is studied for the first time at low temperatures (down to 4.2 K). Lowering the temperature from 300 to 4.2 K leads to an increase in the nominal yield strength from 450 to 750 MPa while the degree of plasticity of the alloy remains on the order of 30% over the entire range. The strain rate sensitivity is measured for deformations ε ∼ 2% by strain rate cycling. Assuming thermally activated plasma deformation, the activation volume for movement of dislocations is calculated for ε ∼ 2% and is found to vary from 122b3 at 300 K to 35b3 at 30 K, where b is the Burgers vector.
The mechanical properties and fracture characteristics of the high-entropy alloy Al0.5CoCrCuFeNi are studied in different structural states (cast and after two heat treatments) at temperatures of 0.5–300 K with quasistatic deformation by uniaxial compression and distension. Mechanical resonance spectroscopy is used to measure the temperature variations of the Young modulus in the different structural states. It is found that heat treatment of the samples leads to an increase (by roughly 25%) in the Young modulus, the nominal yield point τ0.2, and the deforming stress. The form of the deformation curves is analyzed. The temperature interval for the transition from smooth to discontinuous plastic flow is determined. For the cast state the differences in τ0.2 under tension and compression are determined, an anomalous temperature dependence of τ0.2 (for temperatures in the 0.5–4.2 K range) is discovered, and thermal activation analysis of the experimental data yields empirical estimates for the parameters of the interactions of dislocations with local barriers. After heat treatment the samples break up into two parts under compression, as opposed to the cast state, where the samples acquire a “barrel” shape during compression. It is found that fracture of the heat treated samples at temperatures of 300–4.2 K has a viscous character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.