Polyetheretherketone (PEEK) is an alternative to metallic implants and a material of choice in many applications, including orthopedic, spinal, trauma, and dental. While titanium (Ti) and Ti-alloys are widely used in many intraosseous implants due to its biocompatibility and ability to osseointegrate, negatives include stiffness which contributes to shear stress, radio-opacity, and Ti-sensitivity. Many surgeons prefer to use PEEK due to its biocompatibility, similar elasticity to bone, and radiolucency, however, due to its inert properties, it fails to fully integrate with bone. Accelerated Neutral Atom Beam (ANAB) technology has been successfully employed to demonstrate enhanced bioactivity of PEEK both in vitro and in vivo . In this study, we further characterize surfaces of PEEK modified by ANAB as well as elucidate attachment and genetic effects of dental pulp stem cells (DPSC) exposed to these surfaces. ANAB modification resulted in decreased contact angle at 72.9 ± 4.5° as compared to 92.4 ± 8.5° for control (p < 0.01) and a decreased average surface roughness, however with a nano-textured surface profile. ANAB treatment also increased the ability of DPSC attachment and proliferation with considerable genetic differences showing earlier progression towards osteogenic differentiation. This surface modification is achieved without adding a coating or changing the chemical composition of the PEEK material. Taken together, we show that ANAB processing of PEEK surface enhances the bioactivity of implantable medical devices without an additive or a coating.
Core/shell Si/SiO x nanoparticles (Si/SiO x -NP) having bright red-infrared photoluminescence were obtained by a three-stage synthesis based on the thermal disproportionation of microdispersed SiO. Transformation patterns of structure and spectroscopic properties of the material during passage through all process stages (starting from initial SiO microparticles and up to the Si/SiO x -NP sols) have been revealed by using Raman, photoluminescence and ESR spectroscopy, XPS, XRD, and electron microscopy. Thermal annealing of SiO microparticles (stage I) results in formation of amorphous-crystalline Si nanophase in the matrix of SiO 2 , as well as generation of paramagnetic P b centres with the concentration up to 4 9 10 18 particles/g. At the annealing temperature, T an [ 900°C, a rapid growth of nanocrystal sizes takes place, and, simultaneously, a rapid growth of paramagnetic P b centre concentration occurs. Elimination of SiO 2 from the annealed sample by etching in HF (stage II) stimulates further crystallization of amorphous-crystalline core, caused by stress relaxation inside the Si core when removing SiO 2 matrix. Functionalization of nanoparticle surface (stage III) allows obtaining core/shell Si/SiO x -NP with a bright red-infrared photoluminescence and their sols. Average size of the crystalline Si core increases from 4.7 to 11.1 nm when T an at the stage I rises from 350 to 1100°C. At relatively low T an = 350°C, the nanoparticles with monocrystalline Si cores are mainly formed, while at T an [ 1100°C, a large number of polycrystalline Si nanoparticles are also observed. Our TEM images have revealed the existence of monocrystalline Si nanoparticles having significantly different contrast even at comparable nanoparticle sizes. We attribute that to the formation of both bulk (with a high TEM contrast) and flat (2D) Si nanocrystals (with a low TEM contrast) in the course of SiO annealing.
A method for fabricating a copper microdisk electrode of an original design based on 50 μm diameter wire sealed in borosilicate glass is described. The electrochemical properties of the copper microelectrode were studied by the method of steady-state voltammetry in a 2 M NaOH solution in the potential range from -1.1 to 0.8 V (versus saturated Ag/AgCl-electrode). In order to improve the electrochemical response a method for two-stage electrode activation based on a copper dissolution / redeposition procedure followed by polarization in an alkaline medium is suggested. Morphological and physico-chemical changes on copper surface after activation were examined by atomic force microscopy and X-ray photoelectron spectroscopy. After this procedure, the electrode showed a heterogeneous morphology with coarse texture and high roughness parameters, and a layer of catalytically active Cu(III) species was formed on copper surface. The best results were achieved with an activation time of 60 s and a polarization potential of -0.3 V. The effectiveness of the activation procedure was tested during the chronoamperometric determination of methanol, ethanol and ethylene glycol. Factors affecting the formation of the analytical signal of alcohols were studied, and optimal conditions of amperometric measurements were selected on their basis. Under optimal conditions, the metrological characteristics of the method were determined. The peak current response increases linearly with alcohols concentration over the range 0.01 - 0.45 M (0.04 - 3% v/v). The repeatability of the electrode response was evaluated as 3.8% (n = 10). The activated copper microelectrode was used for the determination of ethanol in pharmaceutical and other products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.