Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
A new begomovirus species was identified from tomato plants with upward leaf curling and purple vein symptoms, which was first identified in the Piaui state of Northeast (NE) Brazil in 2014. Tomato leaf samples were collected in 2014 and 2016, and PCR with degenerate primers revealed begomovirus infection. Rolling circle amplification and restriction enzyme digestion indicated a single genomic DNA of ~ 2.6 kb. Cloning and sequencing revealed a genome organization similar to DNA-A components of New World (NW) bipartite begomoviruses, with no DNA-B. The complete nucleotide sequence had the highest identity (80%) with the DNA-A of Macroptilium yellow spot virus (MacYSV), and phylogenetic analyses showed it is a NW begomovirus that clusters with MacYSV and Blainvillea yellow spot virus, also from NE Brazil. Tomato plants agroinoculated with a dimeric clone of this genomic DNA developed upward leaf curling and purple vein symptoms, indistinguishable from those observed in the field. Based on agroinoculation, this virus has a narrow host range, mainly within the family Solanaceae. Co-inoculation experiments with tomato severe rugose virus and tomato mottle leaf curl virus, the two predominant begomoviruses infecting tomato in Brazil, revealed a synergistic interaction among these begomoviruses. The name Tomato leaf curl purple vein virus (ToLCPVV) is proposed for this new begomovirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.