A generalisation in 2+1 dimensions of the Korteweg-de Vries equation is related to the spectral problem ( delta x2- delta y2-p(x,y)) phi (x,y;k)=0. It can contain arbitrary functions of x+y or x-y and time. The Cauchy problem, associated with initial data decaying sufficiently rapidly at infinity, is linearised by an extension of the spectral transform technique to two spatial dimensions. The spectral data are explicitly defined in terms of the initial data and the inverse problem is formulated as a non-local Riemann-Hilbert boundary-value problem. The presence of arbitrary functions of x+y and x-y in the evolution equation implies that the time evolution of the spectral data is linear but non-local. Discrete spectral data are forbidden and, consequently, localised soliton solutions are not allowed.
A nonlinear Schrödinger equation for the envelope of two dimensional surface water waves on finite depth with non zero constant vorticity is derived, and the influence of this constant vorticity on the well known stability properties of weakly nonlinear wave packets is studied. It is demonstrated that vorticity modifies significantly the modulational instability properties of weakly nonlinear plane waves, namely the growth rate and bandwidth.At third order we have shown the importance of the coupling between the mean flow induced by the modulation and the vorticity. Furthermore, it is shown that these plane wave solutions may be linearly stable to modulational instability for an opposite shear current independently of the dimensionless parameter kh, where k and h are the carrier wavenumber and depth respectively.
The modulational instability of gravity wave trains on the surface of water acted upon by wind and under influence of viscosity is considered. The wind regime is that of validity of Miles' theory and the viscosity is small. By using a perturbed nonlinear Schrödinger equation describing the evolution of a narrow-banded wavepacket under the action of wind and dissipation, the modulational instability of the wave group is shown to depend on both the frequency (or wavenumber) of the carrier wave and the strength of the friction velocity (or the wind speed). For fixed values of the watersurface roughness, the marginal curves separating stable states from unstable states are given. It is found in the low-frequency regime that stronger wind velocities are needed to sustain the modulational instability than for high-frequency water waves. In other words, the critical frequency decreases as the carrier wave age increases. Furthermore, it is shown for a given carrier frequency that a larger friction velocity is needed to sustain modulational instability when the roughness length is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.