A product of microbiological cleavage of the sterols side chain, androsta-1,4-diene-3,17-dione, is toxic for bacteria, in particular, actinobacteria of the genera Mycobacterium and Arthrobacter. Sterols were transformed into androsta-1,4-diene-3,17-dione by culturing the M. neoaurum VKPM An-1656 strain in a high yield, provided that a sorbent was used for elimination of contact between the bacterial cells and the product. Unlike the cholesterol side chain, the more branched chains of phytosterols were cleaved in the presence of M. neoaurum at a high rate only under turbulent stirring of the culture medium, which intensified the formation of hydrocarbonate ion from NaNI3 in situ.
Aim: In this study, we identified characteristics of systemic inflammation associated with surgical sepsis in animals. We evaluated the role of purine metabolism, functionally associated lipoperoxidation processes of membrane structures, and the antioxidant system in the development of surgical sepsis in dogs. Materials and Methods: Dogs with a provisional exclusion of sepsis were included in the study. The control group (Group 1) included clinically healthy dogs (n=5), and medium-breed dogs with systemic inflammation response syndrome (n=30) were categorized in the experimental group (Group 2). Along with hemogram and biochemical analysis, we determined the amount of malondialdehyde, glutathione, superoxide dismutase, catalase, glutathione reductase, and glucose-6-phosphate dehydrogenase on the 1st and 14th day of the study. Treatment included a thorough reorganization of the septic focus, followed by antibacterial therapy. Sick animals were injected with a drug (dexamethasone) that suppresses the synthesis and inhibits the action of inflammatory mediators. Decompensation of the functions of organs and systems was carried out using symptomatic therapy. Results: We found that enhanced lipid peroxidation of unsaturated fatty acids of membrane structures stimulates the generalization of inflammatory process, as evidenced by the significant deviation from the physiologically normal values of lipid peroxidation, C-reactive protein, blood cell count, etc. The course of systemic inflammation associated with surgical sepsis in animals can be attributed to several consistently developing processes that function as a result of increased purine mononucleotide catabolism, peroxide compound formation, and their excessive breakdown in reactions associated with the consumption of glutathione due to the insufficient recovery of glutathione disulfide. Conclusion: The amount of uric acid, glycosaminoglycans, hyaluronic acid in blood plasma, and the content of malondialdehyde, glutathione, and glutathione reductase in erythrocytes should be considered when assessing the severity of the systemic inflammatory process. The increased glutathione requirement in dogs with surgical sepsis requires intervention with pharmacological agents, and further research is needed in this aspect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.