In this work, we consider axially symmetric stationary electromagnetic fields in the framework of special relativity. These fields have an angular momentum density in the reference frame at rest with respect to the axis of symmetry; their Poynting vector form closed integral lines around the symmetry axis. In order to describe the state of motion of the electromagnetic field, two sets of observers are introduced: the inertial set, whose members are at rest with the symmetry axis; and the noninertial set, whose members are rotating around the symmetry axis. The rotating observers measure no Poynting vector, and they are considered as comoving with the electromagnetic field. Using explicit calculations in the covariant 3 + 1 splitting formalism, the velocity field of the rotating observers is determined and interpreted as that of the electromagnetic field. The considerations of the rotating observers split in two cases, for pure fields and impure fields, respectively. Moreover, in each case, each family of rotating observers splits in two subcases, due to regions where the electromagnetic field rotates with the speed of light. These regions are generalizations of the light cylinders found around magnetized neutron stars. In both cases, we give the explicit expressions for the corresponding velocity fields. Several examples of relevance in astrophysics and cosmology are presented, such as the rotating point magnetic dipoles and a superposition of a Coulomb electric field with the field of a point magnetic dipole.
We consider electromagnetic fields having an angular momentum density in a locally nonrotating reference frame in Schwarzschild, Kerr, and Kerr-Newman spacetimes. The nature of such fields is assessed with two families of observers, the locally nonrotating ones and those of vanishing Poynting flux. The velocity fields of the vanishing-Poynting observers in the locally nonrotating reference frames are determined using the 3 + 1 decomposition formalism. From a methodological point of view and considering a classification of the electromagnetic field based on its invariants, it is convenient to separate the consideration of the vanishing-Poynting observers into two cases corresponding to the pure and nonpure fields; additionally, if there are regions where the field rotates with the speed of light (light surfaces), it becomes necessary to split these observers into two subfamilies. We present several examples of relevance in astrophysics and general relativity, such as pure rotating dipolar-like magnetic fields and the electromagnetic field of the Kerr-Newman solution. For the latter example, we see that vanishing-Poynting observers also measure a vanishing super-Poynting vector, confirming recent results in the literature. Finally, for all nonnull electromagnetic fields, we present the 4-velocity fields of vanishing Poynting observers in an arbitrary spacetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.