The effect of shortening velocity on the reduction in work output, energy consumption and efficiency during repetitive contractions has been determined in rat extensor digitorum longus muscle. Muscles in situ (with occluded blood flow, 37 degrees C) were stimulated to perform 40 successive contractions (at 4 Hz) with a total duration of the exercise period of 10 s and shortening velocities of either 25, 50 or 75 mm.s-1 (whole muscle-tendon complex). Care was taken that work output during the shortening phase of the first contraction was the same for the different velocities used. Total work output of the 40 contractions was not significantly different between the three groups with different shortening velocities; nor was there a significant difference in the high-energy phosphate consumption over this 10-s exercise period. However, when the ratio of total work output and total energy consumption was calculated a significantly higher efficiency (25-30% in comparison with the efficiency of the other two velocities) was found with the shortening velocity of 50 mm.s-1. There was no significant difference in efficiency between shortening velocities of 25 and 75 mm.s-1. This suggests that with this protocol efficiency showed a velocity-dependent pattern that may have the same shape as the power/velocity curve. Whereas total work output during the 10-s exercise period was not significantly different between the velocities studied, the time course of the changes in work output was quite different. With shortening velocities of 50 and 75 mm.s-1 work output initially increased by maximally 6% and 12% respectively in contrast to a steady level in the contractions with a velocity of 25 mm.s-1.(ABSTRACT TRUNCATED AT 250 WORDS)
The effect of growth on work output, energy consumption and efficiency during repetitive dynamic contractions was determined using extensor digitorum longus muscles of 40-, 60-, 120- and 700-day-old male Wistar rats. When work output of each contraction was normalized to the work output of the first contraction it was found that work output initially increased over the first 10-20 contractions by approximately 8% in each age group. Thereafter a faster decrease in work output was found in the youngest group (approximately 2% each contraction) compared to the older groups (approximately 0.7% each contraction). After 40 contractions the reduction in work output was significantly different only between the youngest group and the two oldest groups (-30% vs -5%). These differences in fatigue were not associated with differences in adenosine 5'-triphosphate and phosphocreatine concentrations or in lactate production. Total work output and high-energy phosphate consumption increased by approximately 555% and 380% from age 40 to 120 days, respectively. Consequently, efficiency was significantly higher (approximately 32%) in the older groups compared to 40-day-old animals. Normalized for muscle mass, mean rate of high-energy phosphate consumption was similar in all groups whereas mean power output was significantly lower in the youngest group (approximately 46%). Thus, the difference in efficiency between the young and the other groups may be attributed to a lower external power production in the youngest group rather than changes in energy turnover.
In activities such as running, many muscles of the lower extremities appear to be actively stretched before they are allowed to shorten. In this study we investigated the effect of an active pre-stretch on the fatigability of muscles. Thus muscle contractions were compared in which shortening was preceded by an active isometric phase or by an active stretch. Rat medial gastrocnemius muscle-tendon complexes (with arrested blood flow) performed a series of ten repeated contractions (1.s-1) with either an active stretch or an isometric phase preceding the shortening. Contraction duration (0.45 s), and shortening duration (0.3 s), distance (6 mm) and velocity (20 mm.s-1) were the same in both types of contraction. Work output during the ten shortening phases was approximately 40% higher in the contractions with an active pre-stretch; in contrast, high-energy phosphate utilization was similar. Over the ten repeated contractions reduction of work output during the shortening phases of both types of contraction was similar in absolute terms (approx. 9.5 mJ). It is suggested that all the extra work performed during the shortening phases after a pre-stretch originated from sources other than cross-bridge cycling, which are hardly affected by fatigue. However, reduction of work output in relative terms, which is how the reduction is often expressed in voluntary exercise, was less after a pre-stretch (26% vs 32%), giving the impression of protection against fatigue by an active pre-stretch.
SUMMARYForce-velocity, power-velocity and unloaded shortening data were obtained from in situ medial gastrocnemius muscle-tendon complexes (stimulated at 60 Hz) with intact circulation of mature male rats ( -125 days old). Measurements were carried out at the end of a long (15 s) contraction (fatigued muscles) or with a short (I s) contraction either in the fresh state (fresh muscles) or in muscles which had recovered for 15 min after a long contraction. Compared to the fresh state fatigue reduced isometric force by 57 %, maximal shortening velocity by -40 % and maximal power output by 81 %. These reductions were similar to data previously obtained with younger rats (40 days old). However, the velocity data of the muscles which had recovered for 15 min after a long contraction showed a greater reduction in the mature rats. This difference between the two age groups together with a difference in the changes in the initial parts of the isometric force-time curves suggest an age-dependent response of the fastfatigable fibre population of these mixed muscles. In a separate series of experiments the underlying mechanism of the recovery from fatigue was studied in a group of young rats.Fatigue was induced with five long (15 s) contractions (each at 5 min intervals). The recovery of isometric force and power output was monitored with short contractions which indicated a plateau of recovery but the absolute values were still reduced after 60 min (85 and 71 % of prefatigue values, respectively). Phosphocreatine concentration recovered rapidly, whereas the ATP concentration was still markedly reduced after 1 h of recovery. The time courses of recovery of inosine-5'-monophosphate (IMP) and lactate concentrations resembled those of force and power output. Thus it is possible that age-dependent differences in IMP and/or lactate production may play a role in fatigue and recovery from fatigue.
Morphological and functional changes as well as changes in fibre-type composition were investigated in the left extensor digitorum longus (EDL) muscles of male Wistar rats of approximately 40, 60, 120 and 700 days old. A number of morphological changes occurred in the EDL muscle during growth. While from 40 to 120 days muscle mass and cross-sectional area (CSA) increased by 247 and 192%, changes in muscle and fibre lengths were much smaller (44 and 17%, respectively). Besides morphological changes tetanic force was also found to increase (approximately 307%) up to 120 days. Because this increase in force was greater than the increase in CSA, specific force increased by approximately 29% between 40 and 60 days. Thereafter, specific force stayed rather constant. From 40 until 60 days changes were also found in the force-frequency and force-velocity curve, which indicate a slowing of the muscles (until 60 days). Changes in fibre-type composition of the EDL muscle were found to occur later during growth between 60 and 120 days. In this period an increase in the relative total area of Type IIBd fibres and a decrease in the relative total area of Type IIBm fibres (corresponding to the Type 2X and IIB fibres, respectively), were found; this was apparently due to a conversion of many Type IIBm into Type IIBd fibres and not to a difference in cross-sectional growth between these fibres.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.