The effects of five strobilurin (beta-methoxyacrylate) fungicides and one triazole fungicide on the physiological parameters of well-watered or water-stressed wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and soya (Glycine max Merr.) plants were compared. Water use efficiency (WUE) (the ratio of rate of transpiration, E, to net rate of photosynthesis, A(n)) of well-watered wheat plants was improved slightly by strobilurin fungicides, but was reduced in water-stressed plants, so there is limited scope for using strobilurins to improve the water status of crops grown under conditions of drought. The different strobilurin fungicides had similar effects on plant physiology but differed in persistence and potency. When applied to whole plants using a spray gun, they reduced the conductance of water through the epidermis (stomatal and cuticular transpiration), g(sw), of leaves. Concomitantly, leaves of treated plants had a lower rate of transpiration, E, a lower intercellular carbon dioxide concentration, c(i), and a lower net rate of photosynthesis, A(n), compared with leaves of control plants or plants treated with the triazole. The mechanism for the photosynthetic effects is not known, but it is hypothesised that they are caused either by strobilurin fungicides acting directly on ATP production in guard cell mitochondria or by stomata responding to strobilurin-induced changes in mesophyll photosynthesis. The latter may be important since, for leaves of soya plants, the chlorophyll fluorescence parameter F(v)/F(m) (an indication of the potential quantum efficiency of PSII photochemistry) was reduced by strobilurin fungicides. It is likely that the response of stomata to strobilurin fungicides is complex, and further research is required to elucidate the different biochemical pathways involved.
We have explored the relationships between specific leaf area calculated for a whole plant and its individual leaves. Barley was grown in hydroponics in controlled environment cabinets. Plants were harvested on the basis of physiological age (defined as the number of days after full expansion of leaves on the main stem) and the area and weight of whole, fully expanded, leaves measured and specific leaf area (SLA) of individual leaves or whole plants calculated. Specific leaf area calculated for individual leaves (SLA L ) varied with leaf position and with leaf age after full expansion whereas SLA calculated for whole plants (SLA P ) varied with plant age. The same conclusions were reached whether the results were based on total dry weight or dry weight minus soluble carbohydrates (' structural weight '). Transferring plants to shade on the day of full expansion of the third leaf on the main stem increased the SLA P , and also SLA L of leaves 3 and 4 on the main stem (leaf 4 being the younger leaf of the two), because of a decrease in the ' structural weight ' of these leaves. However SLA L of leaf 2 (which was older than leaf 3) was not affected by shading ; the effect was confined to leaves developing in the new conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.