Abstract. The conductance of a quantum sphere with two one-dimensional wires attached to it is investigated. An explicit form for the conductance as a function of the chemical potential is found from the first principles. The form and positions of the resonance maxima on the plot of the conductance are studied.
Electron transport in a two-terminal Aharonov-Bohm ring with a few shortrange scatterers is investigated. An analytical expression for the conductance as a function of the electron Fermi energy and magnetic flux is obtained using the zero-range potential theory. The dependence of the conductance on positions of scatterers is studied. We have found that the conductance exhibits asymmetric Fano resonances at certain energies. The dependence of the Fano resonances on magnetic field and positions of impurities is investigated. It is found that collapse of the Fano resonances occurs and discrete energy levels in the continuous spectrum appear at certain conditions. An explicit form for the wave function corresponding to the discrete level is obtained.
In a superlattice placed in crossed electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the miniband and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.