Four starch-encapsulated formulations of EPTC(S-ethyl dipropylthiocarbamate) and of butylate(S-ethyl diisobutylthiocarbamate) were prepared and evaluated by comparison with their respective emulsifiable concentrate formulations for their slow-release capabilities and efficacies. Chemical and biological evaluation indicated that difference in controlled-release could be achieved by the selection of the starch xanthate and oxidant used in the formualtion process. EPTC and butylate released slower when formulated as starch-encapsulated granules than when formulated as emulsifiable concentrates under soil conditions that favored rapid release. The initial release was adequate for weed control and slow enough for desired residual activity. Repeated seeding and harvesting the treated soils and bioassays of treated soils generally produced release rate anticipated from short term dry and wet chemical tests.
Field sudies on the persistence of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] showed less persistence under coulter than chisel or conventional plow tillage in the year of application. The residue on the coulter system from the previous corn (Zea maysL.) crop initially prevented as much as 30% of the atrazine from reaching the soil surface. After five annual applications, the atrazine residue was generally higher in the coulter than the chisel or conventional tillage systems, but below levels considered to be biologically active.
This study was conducted in 1993 and 1994 to determine if nicosulfuron or primisulfuron had any adverse effects on ear or whole-plant development. Factors considered were cultivar, herbicide, rate, and timing of application. Four sweet corn cultivars: `More' (su), `Calico Belle' (se), and `Frontier' and `Challenger' (sh2) were evaluated for foliar injury, plant vigor, plant height (1994 only), ear injury, and yield. Nicosulfuron and primisulfuron were applied at two rates: the labeled rate (x) of 35 g a.i./ha and 40 g a.i./ha, respectively, and at the 2x rate. Herbicides were applied early postemergence at V2 (corn height 10–15 cm) or late postemergence at V7 (corn height 30–50 cm). Plant foliar injury ratings, ear injury ratings, number of ears, number of injured ears, and yields were collected. Ears with injury were described as pinched. There was a constriction of the cob, caused by a reduction in kernel row number, ranging from two to eight rows lost. Sweet corn cultivars varied in their response to nicosulfuron and primisulfuron. Timing of application had a greater impact on ear injury than did the rate. Applications at the V7 stage caused more severe ear injury than application at the V2 stage. Ear injury was more severe in nicosulfuron treatments than primisulfuron treatments. Height reductions were caused by both compounds at both applications, with primisulfuron causing greater stunting. Primisulfuron caused more severe foliar injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.