Oral anabolic steroids produce striking reductions in serum concentrations of high-density lipoprotein (HDL) cholesterol. We hypothesized that this effect related to their route of administration and was unrelated to their androgenic potency. We administered oral stanozolol (6 mg/d) or supraphysiological doses of intramuscular testosterone enanthate (200 mg/wk) to 11 male weight lifters for six weeks in a crossover design. Stanozolol reduced HDL-cholesterol and the HDL2 subfraction by 33% and 71%, respectively. In contrast, testosterone decreased HDL-cholesterol concentration by only 9% and the decrease was in the HDL3 subfraction. Apolipoprotein A-I level decreased 40% during stanozolol but only 8% during testosterone treatment. The low-density lipoprotein cholesterol concentration increased 29% with stanozolol and decreased 16% with testosterone treatment. Stanozolol, moreover, increased postheparin hepatic triglyceride lipase activity by 123%, whereas the maximum change during testosterone therapy (+25%) was not significant. Weight gain was similar with both drugs, but testosterone was more effective in suppressing gonadotropic hormones. We conclude that the undesirable lipoprotein effects of 17-alpha-alkylated steroids given orally are different from those of parenteral testosterone and that the latter may be preferable in many clinical situations.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)
We measured maximal O2 uptake (VO2max) during stationary cycling in 40 pregnant women [aged 29.2 +/- 3.9 (SD) yr, gestational age 25.9 +/- 3.3 wk]. Data from 30 of these women were used to develop an equation to predict the percent VO2max from submaximal heart rates. This equation and the submaximal VO2 were used to predict VO2max in the remaining 10 women. The accuracy of VO2max values estimated by this procedure was compared with values predicted by two popular methods: the Astrand nomogram and the VO2 vs. heart rate (VO2-HR) curve. VO2max values estimated by the derived equation method in the 10 validation subjects were only 3.7 +/- 12.2% higher than actual values (P greater than 0.05). The Astrand method overestimated VO2max by 9.0 +/- 19.4% (P greater than 0.05), whereas the VO2-HR curve method underestimated VO2max by only 1.6 +/- 10.3% in the same 10 subjects (P greater than 0.05). Both the Astrand and the VO2-HR curve methods correlated well with the actual values when all 40 subjects were considered (r = 0.77 and 0.85, respectively), but the VO2-HR curve method had a lower SE of prediction than the Astrand method (8.7 vs. 10.4%). In a comparison group of 10 nonpregnant sedentary women (29.9 +/- 4.5 yr), an equation relating %VO2max to HR nearly identical to that obtained in the pregnant women was found, suggesting that pregnancy does not alter this relationship. We conclude that extrapolating the VO2-HR curve to an estimated maximal HR is the most accurate method of predicting VO2max in pregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.