The present work develops an accurate prediction model of the COVID-19 pandemic, capable not only of fitting data with a high regression coefficient but also to predict the overall infections and the infection peak day as well. The model is based on the Verhulst equation, which has been used to fit the data of the COVID-19 spread in China, Italy, and Spain. This model has been used to predict both the infection peak day, and the total infected people in Italy and Spain. With this prediction model, the overall infections, the infection peak, and date can accurately be predicted one week before they occur. According to the study, the infection peak took place on 23 March in Italy, and on 29 March in Spain. Moreover, the influence of the total and partial lockdowns has been studied, without finding any meaningful difference in the disease spread. However, the infected population, and the rate of new infections at the start of the lockdown, seem to play an important role in the infection spread. The developed model is not only an important tool to predict the disease spread, but also gives some significant clues about the main factors that affect to the COVID-19 spread, and quantifies the effects of partial and total lockdowns as well.
Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit a self-excited vibration. In this paper, an artificial neural network (ANN)—a data learning model—is applied to model turning stability. The novel approach is to use a physics-based process model—the analytical stability limit—to generate a (synthetic) data set that trains the ANN. This enables the process physics to be combined with data learning in a hybrid approach. As anticipated, it is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after appropriate training.
The present work develops an accurate prediction model of the COVID-19 pandemic, capable not only of fitting data with a high regression coefficient but also to predict the overall infections and the infection peak day as well. The model is based on the Verhulst equation, which has been used to fit the data of the COVID-19 spread in China, Italy, and Spain. This model has been used to predict both the infection peak day, and the total infected people in Italy and Spain. With this prediction model, the overall infections, the infection peak, and date can accurately be predicted one week before they occur. According to the study, the infection peak took place on 23 March in Italy, and on 29 March in Spain. Moreover, the influence of the total and partial lockdowns has been studied, without finding any meaningful difference in the disease spread. However, the infected population, and the rate of new infections at the start of the lockdown, seem to play an important role in the infection spread. The developed model is not only an important tool to predict the disease spread, but also gives some significant clues about the main factors that affect to the COVID-19 spread, and quantifies the effects of partial and total lockdowns as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.