Rapid permafrost degradation is observed in northern regions as a result of climate change and expanding economic development. Associated increases in active layer depth lead to thermokarst development, resulting in irregular surface topography. In Central Yakutia, significant areas of the land surface have been deteriorated by thermokarst; however, no mitigation or land rehabilitation efforts are undertaken. This paper presents the results of numerical modeling of the thermal response of permafrost to changes in the active layer hydrothermal regime using field data from the village of Amga, Republic of Sakha (Yakutia), and mathematical analysis. The results suggest that restoring a thick ice-enriched layer will require increasing the pre-winter soil moisture contents in order to increase the effective heat capacity of the active layer. Snow removal or compaction during the winter is recommended to maximize permafrost cooling. The thickness of the restored transition layer varies from 0.3 to 1.3 m depending on soil moisture contents in the active layer. The modeling results demonstrate that damaged lands can be restored through a set of measures to lower the subsurface temperatures. A combination of the insulating layer (forest vegetation) and the high heat capacity layer (transition layer) in the atmosphere–ground system would be more effective in providing stable geocryological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.