This work focuses on the effect of soaking time on the microstructure during ultrafast heat treatment of a 50% cold rolled low carbon steel with initial ferritic-pearlitic microstructure.Dilatometry analysis was used to estimate the effect of heating rate on the phase transformation temperatures and to select an appropriate inter-critical temperature for final heat treatments. A thorough qualitative and quantitative microstructural characterization of the heat treated samples is performed using a wide range of characterization techniques. A complex multiphase, hierarchical microstructure consisting of ferritic matrix with embedded martensite and retained austenite is formed after all applied heat treatments. In turn, the ferritic matrix contains recrystallized and non-recrystallized grains. It is demonstrated that the ultrafast heating generally results in finer microstructure compared to the conventional heating independently on the soaking time. There is a significant effect of the soaking time on the volume fraction of martensite of the ultrafast heated material, while in the samples heated with conventional heating rate it remains relatively unchanged during soaking.Recrystallization, recovery and phase transformations occurring during soaking are discussed with respect to the applied heating rate.
In this work, we investigate the sensitivity of the microstructure and mechanical properties of an ultrafast heat treated low carbon-steel to the peak temperature. In all studied cases, the steel was heated within the intercritical temperature range (i.e. between the AC1 and AC3 temperatures). Both the peak temperature and soaking time were varied, and their effect on the size, the fraction of individual microstructural constituents and their tensile mechanical response were investigated. It is shown that the increasing peak temperature and soaking time promote austenite formation and recrystallization processes in the ferritic matrix. The highest nanohardness is shown by martensitic grains, while recovered ferrite demonstrated slightly higher nanohardness compared to recrystallized ferrite. The applied heat treatment parameters have strong effect on the nanohardness of martensite, whereas nanohardness of ferrite microconstituents is not sensitive to variation of the peak temperature and soaking time. The non-recrystallized ferrite is harder than its recrystallized counterpart due to the higher dislocation density of the former. Increasing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.