This paper first describes, from a high level viewpoint, the main challenges that had to be solved in order to develop a theory of spin glasses in the last fifty years. It then explains how important inference problems, notably those occurring in machine learning, can be formulated as problems in statistical physics of disordered systems. However, the main questions that we face in the analysis of deep networks require to develop a new chapter of spin glass theory, which will address the challenge of structured data.
A probability distribution has been proposed recently by one of us as an order parameter for spin glasses. We show that this probability depends on the particular realization of the couplings even in the thermodynamic limit, and we study its distribution. We also show that the space of states has an ultrametric topology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.