The world is currently facing critical water and energy issues due to the growing population and industrialization, calling for methods to obtain potable water, e.g., by photocatalysis, and to convert solar energy into fuels such as chemical or electrical energy, then storing this energy. Energy storage has been recently improved by using electrochemical capacitors and ion batteries. Research is actually focusing on the synthesis of materials and hybrids displaying improved electronic, physiochemical, electrical, and optical properties. Here, we review molybdenum disulfide (MoS2) materials and hybrids with focus on synthesis, electronic structure and properties, calculations of state, bandgap and charge density profiles, and applications in energy storage and water remediation.
Global overpopulation, industrial expansion, and urbanization have generated massive amounts of wastes. This is considered as a significant worldwide challenge that requires an urgent solution. Additionally, remarkable advances in the field of biomedicine have impacted the entire spectrum of healthcare and medicine. This has paved the way for further refining of the outcomes of biomedical strategies toward early detection and treatment of different diseases. Various nanomaterials (NMs) have been dedicated to different biomedical applications including drug delivery, vaccinations, imaging modalities, and biosensors. However, toxicity is still the main factor restricting their use. NMs recycled from different types of wastes present a pioneering approach to not only avoid hazardous effects on the environment, but to also implement circular economy practices, which are crucial to attain sustainable growth. Moreover, recycled NMs have been utilized as a safe, yet revolutionary alternative with outstanding potential for many biomedical applications. This review focuses on waste recycled NMs, their synthesis, properties, and their potential for multiple biomedical applications with special emphasis on their role in the early detection and control of multiple diseases. Their pivotal therapeutic actions as antimicrobial, anticancer, antioxidant nanodrugs, and vaccines will also be outlined. The ongoing advancements in the design of recycled NMs are expanding their diagnostic and therapeutic roles for diverse biomedical applications in the era of precision medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.