Multidetector row spiral CT with contrast medium can provide accurate information regarding the anatomy of the urinary tract and vasculature of the kidney. Moreover, it can detect renal and vascular abnormalities that might be potentially significant for safe renal donation. In addition, it can accurately demonstrate selective GFR of each kidney. Therefore, we recommend spiral CT with contrast material as a single radiological diagnostic modality for the assessment of potential live kidney donors.
Abstract. An alternative method for diagnosing malignant lung nodules by their shape rather than conventional growth rate is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis, which represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called spherical harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by two probabilistic visual appearance models (the learned prior and the estimated current appearance one); (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface, and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification to distinguish malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in the 93.6% correct classification (for the 95% confidence interval), showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer.
Kidney segmentation is a key step in developing any noninvasive computer-aided diagnosis (CAD) system for early detection of acute renal rejection. This paper describes a new 3-D segmentation approach for the kidney from computed tomography (CT) images. The kidney borders are segmented from the surrounding abdominal tissues with a geometric deformable model guided by a special stochastic speed relationship. The latter accounts for a shape prior and appearance features in terms of voxel-wise image intensities and their pair-wise spatial interactions integrated into a two-level joint Markov-Gibbs random field (MGRF) model of the kidney and its background. The segmentation approach was evaluated on 21 CT data sets with available manual expert segmentation. The performance evaluation based on the receiver operating characteristic (ROC) and Dice similarity coefficient (DSC) between manually drawn and automatically segmented contours confirm the robustness and accuracy of the proposed segmentation approach.
Contrast enhanced spiral CT is more sensitive than IVP for identifying the cause of chronic obstructive uropathy. Moreover, it is as accurate as radioisotope renal scan for calculating the total and separate kidney function. We recommend spiral CT with contrast medium as a single radiological diagnostic modality for the assessment of patients with chronic renal obstruction and normal serum creatinine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.