In recent decades, there has been a great deal of interest in conducting polymers due to their broad applications. At the same time, various synthetic techniques have been developed to produce various nanostructures of the conducting polymers with their fascinating properties. However, the techniques for the manufacture of 2D nanosheets are either complex or expensive. No comprehensive approach for constructing 2D and 3D materials or their composites has been documented. Herein, a simple and scalable synthetic protocol is reported for the design of 2D, 3D, and related conducting polymer nanocomposites by interface manipulation in a bicontinuous microemulsion system. In this method, diverse bicontinuous thin layers of oil and water are employed to produce 2D nanosheets of conducting polymers. For the fabrication of 3D polypyrrole (PPY) and their composites, specially designed linkers of the monomers are applied to lock the 3D networks of the conducting polymers and their composites. The technique can be extended to the fabrication of most conducting polymer composites, being cost‐effective and easily scalable. The optimum electrical conductivity obtained for 2D PPY nanosheets is 219 S cm−1, the highest literature value reported to date to the best of knowledge.
The article aims to develop a technology for producing a modern fuel briquette from rice husks(RH), which can be used in a complex, gives little flame, and does not emit toxic substances during combustion. The possibility of using such briquettes is used for heating and cooking on the street and unequipped places. Consumers of briquettes can be military units in combat operations or exercises, expeditions, and tourists working in areas where a stable fuel supply is complex. To this end, oxygen-rich components are adsorbed during thermal decomposition, using the sorption properties of activated carbon associated with an increase in its specific surface area, specific volume, and pores, including a solution of oxidants in an aqueous medium, which significantly increases the combustion rate of carbon-containing composite fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.