We study the shift in the critical temperature T(c) in binary mixtures in strong electric fields. In experiments we measure the nonlinear dielectric effect (NDE) in a mixture of nitrobenze and n-octane and calculate Piekara's factor. We find that the critical anomaly of Piekara's factor is a function of an electric field strength. We propose to explain this observation as a result of a downward shift of T(c), and this allows us to calculate (∂T(c)/∂E(2)) = (-22 ± 10) × 10(-16) (K m(2))/V(2). In the theoretical part we amend Landau and Lifshitz's formula and show that the downward shift of Tc can be estimated from a simple mean-field theory taking into account the linear and quadratic terms in an expansion of the constitutive relation ε(x) between the electric constant ε and mixture composition x.
Electric permittivity and density were measured in a nitrobenzene and octane mixture in the vicinity of the upper critical consolute point. Measurements were conducted in the one-phase region, at the critical concentration. The possibility of stirring in the course of measurements allowed us to check if the density and concentration gradients had any influence on the obtained results. No signs of the presence of the gradients mentioned above were found. Using the data obtained in the reported measurements, different methods of the fitting of the equation describing the permittivity anomaly were tested. The calculation of a reliable value of the critical amplitude, used to estimate the critical temperature shift under the influence of the electric field, was of particular interest. The derivative (∂T(c)/∂E(2)) was found to be (-3.9 ± 0.3) × 10(-16) K m(2) V(-2).
The main objective of this paper is the development of a rheological model for automotive steels for the conditions of hot strip rolling and implementation of this model in a finite element program is. Three types of steels were investigated, IF, dual phase and TRIP steel. Plastometric tests were performed on a Gleeble 3800 simulator for the temperature range 850-1200 oC and strain rates 3-150 S·1. Inverse analysis was applied to eliminate the influence of disturbances occurring in the plastometric tests and to determine the real flow stress of the material. The coefficients in the flow stress equation were evaluated and this equation was implemented in the FEM code as the constitutive law. The model was validated by comparison of measured and calculated loads in the compression tests and by strip rolling experiments conducted in the laboratory mill. Validation confirmed a good predictive capability of the rheological model.
ExperimentsThe axisymmetrical compression tests were conducted on the Gleeble 3800 simulator at the Institute for Ferrous Metallurgy in Gliwice, Poland. Three steels with the chemical composition given in Table 1 were investigated. The axisymmetrical samples measuring 10x12 mm were deformed at temperatures 950°C, 1050°C, 1150°C and 1200°C and at constant strain rates of 3 S·I, 12 s', 50 S-I and 150 S-I at each temperature. These are the conditions which cover the whole range of parameters in the hot strip rolling.
The aim of the study was to develop a technology for welding non-weldable 42CrMo4 and NANOS-BA® steel grades in the process of hot rolling and two-stage heat treatment. As a result of physical experiments carried out in a line for semi-industrial simulation of the production of metals and their alloys (LPS) and additional heat treatment, a durable combination of 42CrMo4 and NANOS-BA® steels with high mechanical properties was obtained, including: Rp0.2 = 1036 MPa, Rm = 1504 MPa and A = 10.9%, without microscopically visible cracks and other discontinuities in the joined surface. The quality of the 42CrMo4/NANOS-BA® clad plates produced in this way was assessed on the basis of microstructure examination as well as bending, shear and tensile strength tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.