Bone defects in the craniomaxillofacial skeleton vary from small periodontal defects to extensive bone loss, which are difficult to restore and can lead to extensive damage of the surrounding structures, deformities, and limited functions. Plenty of surgical regenerative procedures have been developed to reconstruct or prevent alveolar defects, based on guided bone regeneration involving the use of autogenous bone grafts or bone substituents. However, these techniques have limitations in the restoration of morphological and functional reconstruction, thus stopping disease progression but not regenerating lost tissue. Most promising candidates for regenerative therapy of maxillofacial bone defects represent postnatal stem cells, because of their replication potential in the undifferentiated state and their ability to differentiate as well. There is an increased need for using various orofacial sources of stem cells with comparable properties to mesenchymal stem cells because they are more easily available with minimally invasive procedures. In addition to the source of MSCs, another aspect affects the regeneration outcomes. Thermal, mechanical, and chemical stimuli after surgical procedures have the ability to generate pain, usually managed with pharmacological agents, mostly nonsteroidal anti-inflammatory drugs (NSAIDs). Some studies revealed that NSAIDs have no significant cytotoxic effect on bone marrow stem cells from mice, while other studies showed regulation of osteogenic and chondrogenic marker genes in MSC cells by NSAIDs and paracetamol, but no effect was observed in connection with diclofenac use. Therefore, there is a need to focus on such pharmacotherapy, capable of affecting the characteristics and properties of implanted MSCs.
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Stem cell transplantation represents a unique therapeutic tool in tissue engineering and regenerative medicine. However, it was shown that the post-injection survival of stem cells is poor, warranting a more comprehensive understanding of activated regenerative pathways. Numerous studies indicate that statins improve the therapeutic efficacy of stem cells in regenerative medicine. In the present study, we investigated the effect of the most widely prescribed statin, atorvastatin, on the characteristics and properties of bone-marrow-derived mesenchymal stem cells (BM-MSCs) cultured in vitro. We found that atorvastatin did not decrease the viability of BM-MSCs, nor did it change the expression of MSC cell surface markers. Atorvastatin upregulated the mRNA expression levels of VEGF-A and HGF, whereas the mRNA expression level of IGF-1 was decreased. In addition, the PI3K/AKT signaling pathway was modulated by atorvastatin as indicated by the high mRNA expression levels of PI3K and AKT. Moreover, our data revealed the upregulation of mTOR mRNA levels; however, no change was observed in the BAX and BCL-2 transcripts. We propose that atorvastatin benefits BM-MSC treatment due to its ability to upregulate angiogenesis-related genes expression and transcripts of the PI3K/AKT/mTOR pathway.
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.