The use of electricity has become a need that is increasing day by day. So it is not surprising that the problem of using electricity has attracted the attention of many researchers to research it. Electricity users make various efforts and ways to save on the use of electrical energy. One of them is saving electricity usage by electricity users using electrical energy-efficient equipment. That is why the previous research confirms the need for interventions to reduce the use of electrical energy. Therefore, this study aims to predict electricity use and measure the performance of the anticipated results of electricity use. This study uses the back-propagation method in predicting the use of electricity. This study concluded that the backpropagation architectural model with better performance is the six hidden layer architecture, 0.4 learning rate, and the Root Means Square Error (RMSE) value of 0.203424. Meanwhile, the training data test results get the best architectural model on hidden layer 8 with a learning rate of 0.3 with an RMSE performance value of 0.035811. The prediction results show that the prediction of electricity consumption is close to the actual data of actual electricity consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.