Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp)-C (sp) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cβ-Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide diversity of natural, unnatural, posttranslationally modified (methylated, glycosylated, phosphorylated, hydroxylated), and labeled (fluorinated, isotopically labeled) side chains to be added to a common, readily accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for access to diverse proteins.
Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.
The structural basis of lipid acyl-chain selection by membrane-intrinsic enzymes is poorly understood because most integral membrane enzymes of lipid metabolism have proven refractory to structure determination; however, robust enzymes from the outer membranes of gram-negative bacteria are now providing a first glimpse at the underlying mechanisms. The methylene unit resolution of the phospholipid:lipid A palmitoyltransferase PagP is determined by the hydrocarbon ruler, a 16-carbon saturated acyl-chain-binding pocket buried within the transmembrane beta-barrel structure. Substitution of Gly88 lining the floor of the hydrocarbon ruler with Ala or Met makes the enzyme select specifically 15- or 12-carbon saturated acyl chains, respectively, indicating that hydrocarbon ruler depth determines acyl-chain selection. However, the Gly88Cys PagP resolution does not diminish linearly because it selects both 14- and 15-carbon saturated acyl chains. We discovered that an exciton, emanating from a buried Tyr26-Trp66 phenol-indole interaction, is extinguished by a local structural perturbation arising from the proximal Gly88Cys PagP sulfhydryl group. Site-specific S-methylation of the single Cys afforded Gly88Cys-S-methyl PagP, which reasserted both the exciton and methylene unit resolution by specifically selecting 13-carbon saturated acyl chains for transfer to lipid A. Unlike the other Gly88 substitutions, the Cys sulfhydryl group recedes from the hydrocarbon ruler floor and locally perturbs the subjacent Tyr26 and Trp66 aromatic rings. The resulting hydrocarbon ruler expansion thus occurs at the exciton's expense and accommodates an extra methylene unit in the selected acyl chain. The hydrocarbon ruler-exciton juxtaposition endows PagP with a molecular gauge for probing the structural basis of lipid acyl-chain selection in a membrane-intrinsic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.