Flow cytometry combines the advantages of microscopy and biochemical analysis in a single highly sensitive technique for a rapid examination of numerous individual living cells. It has become a potent and essential tool in the studies of the physiology of the whole cell and its organelles. Rhodamine 123 is a vital fluorescent dye used in flow cytometry. As it is specifically concentrated in mitochondria because of the transmembrane potential that these organelles maintain in living cells, rhodamine 123 is thus a useful probe for monitoring the abundance and activity of mitochondria. A critical survey of the routine use of rhodamine 123 together with flow cytometry in mitochondrial research is presented.
The culture of rabbit tenocytes could be a useful model in the study of the physiopathology and pharmacotoxicology of tendons. This work was undertaken to examine the in vitro behavior of tenocytes form juvenile rabbit Achilles tendons. We report observations of the morphological and biological characteristics of primary culture and subsequent passages of rabbit tendon cells cultured in monolayer. Data obtained by electron microscopy and growth curves were complementary. After 36 passages, the generation time of tenocytes did not change and no sign of senescence could be seen. Primary culture and the first passages retained the expression of tenocyte differentiated functions, synthesis of type I collagen and decorin. Cell growth behavior was not modified upon passaging. However, when subcultured, tenocytes displayed a modulated phenotype.
Chondrocytes cultivated in monolayer rapidly divide and lose their morphological and biochemical characteristics, whereas they maintain their phenotype for long periods of time when they are cultivated in alginate beads. Because cartilage has a low cellularity and is difficult to obtain in large quantities, the number of available cells often becomes a limiting factor in studies of chondrocyte biology. Therefore, we explored the possibility of restoring the differentiated properties of chondrocytes by cultivating them in alginate beads after two multiplication passages in monolayer. This resulted in the reexpression of the two main markers of differentiated chondrocytes: Aggrecan and type II collagen gene expression was strongly reinduced from day 4 after alginate inclusion and paralleled protein expression. However, 2 weeks were necessary for total suppression of type I and III collagen synthesis, indicators of a modulated phenotype. Interleukin-1beta, a cytokine that is present in the synovial fluid of rheumatoid arthritis patients, induces many metabolic changes on the chondrocyte biology. Compared with cells in primary culture, the production of nitric oxide and 92-kDa gelatinase in response to interleukin-1beta was impaired in cells at passage 2 in monolayer but was fully recovered after their culture in alginate beads for 2 weeks. This suggests that the effects of interleukin-1beta on cartilage depend on the differentiation state of chondrocytes. This makes the culture in alginate beads a relevant model for the study of chondrocyte biology in the presence of interleukin-1beta and other mediators of cartilage destruction in rheumatoid arthritis and osteoarthrosis.
Articular chondrocytes from 2- to 3-month-old rabbits were cultured in serum-free medium supplemented with fibroblast growth factor. The effects were studied of GH, insulin-like growth factors (IGFs), and insulin on the production of IGF-I, IGF-II, and their binding proteins (BPs) and on cell multiplication. In the control culture medium, IGF-I levels were about one fifth those of IGF-II. Western blot analysis of the BPs revealed a predominant 30K form and 24K and 20K forms which appeared inconsistently and in small quantities. Ten to 100 ng/ml human GH had no mitogenic effect, and even had a slightly inhibitory effect. IGF-I at 10 ng/ml stimulated cell multiplication above the control level by 41% and at 50 ng/ml by 74%, whereas the mean increase obtained with IGF-II (10 and 50 ng/ml) was only 19%. At the same doses, insulin had no effect, but at 5 micrograms/ml it stimulated cell multiplication by a mean of 67%. There was a positive correlation between cell number and release into the medium of both IGF-I (r = 0.86) and IGF-II (r = 0.77). Neither IGF-I nor IGF-II production was affected by GH. Insulin (5 micrograms/ml) increased IGF-I production by a factor of 2.6, but increased IGF-II production by a factor of only 1.4. Under the various conditions of culture with different doses of GH and insulin, cell multiplication, relative to the control value was positively correlated to the IGF-I/IGF-II production ratio (r = 0.77). It would, therefore, seem that IGF-I secreted by the chondrocytes may stimulate their own proliferation. When IGFs or insulin were added to the culture medium, changes in the electrophoretic profiles of the BPs included an increase in the 30K form and an increase in or the appearance of the 24K and 20K forms. Ten and 50 ng/ml IGF-I or IGF-II had effects equal to or greater than those induced by 5 micrograms/ml insulin. These results indicate that the syntheses of BPs and IGFs are coordinated and that IGFs may be implicated in the control of the synthesis of their BPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.