The objective of this experiment was to investigate the effect of level of dietary concentrate on rumen fermentation, digestibility, and N losses in lactating dairy cows. The experiment was a replicated 3x3 Latin square design with 6 cows and 16-d adaptation periods. Ruminal contents were exchanged between cows at the beginning of each adaptation period. Data for 2 of the diets tested in this experiment are presented here. The diets contained (dry matter basis): 52% (LowC; control) and 72% (HighC) concentrate feeds. Crude protein contents of the diets were 16.5 and 16.4%, respectively. The HighC diet decreased ruminal pH and ammonia concentration and increased propionate concentration compared with LowC. Acetate:propionate ratio was greater for LowC than for HighC. Rumen methane production and microbial protein synthesis were unaffected by diet. Dry matter intake was similar among diets, but milk yield was increased by HighC compared with LowC (36.0 and 33.2 kg/d, respectively). Milk fat percentage and yield and total-tract apparent NDF digestibility were decreased by HighC compared with LowC. More ruminal ammonia N was transferred into milk protein with HighC than with LowC. Urinary N excretion, plasma urea N, and milk urea N concentration were not affected by diet. The ammonia emitting potential of manure was similar between LowC and HighC diets. Increased concentrate proportion in the diet of dairy cows resulted in reduced ruminal ammonia concentration and enhanced ammonia utilization for milk protein synthesis. These effects, however, did not result in reduced urinary N losses and only marginally improved milk N efficiency. Increasing dietary concentrate was not a successful strategy to mitigate enteric methane production and ammonia emissions from manure.
This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.
This experiment investigated the effect of dietary crude protein (CP) and ruminally degraded protein (RDP) levels on rumen fermentation, digestibility, ammonia emission from manure, and performance of lactating dairy cows. The experiment was a replicated 3 x 3 Latin square design with 6 cows. Three diets varying in CP concentration were tested (CP, % of dry matter): 15.4 (high CP, control), 13.4 (medium CP), and 12.9% (low CP). These diets provided metabolizable protein balances of 323, -44, and 40 g/d and RDP balances of 162, -326, and -636 g/d (high, medium, and low, respectively). Both the medium and low CP diets decreased ruminal pH compared with high CP, most likely because of the higher nonfiber carbohydrate concentration in the former diets. Ruminal ammonia pool size (rumen ammonia N was labeled with (15)N) and the concentration of total free amino acids were greater for the high CP diet than for the RDP-deficient diets. Apparent total-tract nutrient digestibilities were not affected by treatment. Both the medium and low CP diets resulted in lower absolute and relative excretion of urinary N compared with the high CP diet, as a proportion of N intake. Excretion of fecal N and milk yield and composition were not affected by diet. Milk N efficiency (milk N / N intake) and the cumulative secretion of ammonia-(15)N in milk protein were greater for the RDP-deficient diets, and milk urea N concentration was greater for the high CP diet. Both medium and low CP diets decreased the irreversible loss of ruminal ammonia N compared with the high CP diet. The rate and cumulative ammonia emissions from manure were lower for the medium and low CP diets compared with the high CP diet. Overall, this study demonstrated that dairy diets with reduced CP and RDP concentrations will produce manure with lower ammonia-emitting potential without affecting cow performance, if metabolizable protein requirements are met.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.