A three-dimensional constitutive model for skeletal muscle incorporating microstructural characteristics is developed and numerically implemented in a general purpose finite element program. The proposed model takes into account explicitly the volume fractions of muscle fibers and connective tissue by using the Voigt homogenization approach to bridge the different length scales of the muscle structure. The model is used to estimate the active and passive homogenized muscle response. Next, the model is validated by experimental data and periodic three-dimensional unit cell calculations comprising various fiber volume fractions and mechanical properties of the constituents. The model is found to be in very good agreement with both the experimental data and the finite element results for all the examined cases. The influence of fiber volume fraction and material properties of constituents on effective muscle response under several loading conditions is examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.