Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent.
Bacteriophages are increasingly being used as water quality indicators. Two groups of phages infecting Escherichia coli, somatic and F-specific coliphages, are being considered as indicators of fecal and viral contamination for several types of water around the world. However, some uncertainties remain regarding which coliphages to assess. Recently, E. coli strain CB390 has been reported to be suitable for simultaneous detection of both groups, which seems to be more informative than determining only one of the groups. Here, a significant number of samples from different settings, mostly those where F-specific phages have been reported to outnumber somatic coliphages, are analyzed for somatic coliphages, F-specific RNA phages by standardized methods and coliphages detected by host strain CB390. The results presented here confirm that the numbers of phages counted using CB390 are equivalent to the sum of the somatic and F-specific coliphages counted independently in all settings. Hence the usefulness of this strain for simultaneous detection of somatic and F-specific coliphages is confirmed. Also, sets of data on the presence of coliphages in reclaimed and groundwater are reported.
Significance and Impact of the Study: Whether in the context of microbial ecology or in an industrial context, many questions in microbiology are linked to microbial viability. As cultivation of micro-organisms can be long or may not be possible, fast methods to assess the numbers of live cells are in great demand. We present here a straightforward strategy to determine the relative proportions of intact cells. The PCR-based rapid method is expected to be useful where relative information is sufficient (e.g. for comparing the effect of different antimicrobial treatments on known numbers of micro-organisms) or when the presence of PCR inhibitors does not allow absolute quantification. KeywordsCryptosporidium parvum, live-dead distinction, propidium monoazide, viability. AbstractThe fast analysis of relative proportions of live and dead cells can be of great value whether for comparing inactivation efficiencies of different biocidal treatments or for monitoring organisms of interest in environmental samples. We introduce here a straightforward method to determine the percentage of intact cells based on treatment of samples with the viability dye propidium monoazide (PMA). PMA selectively enters membrane-damaged cells and suppresses their PCR detection through modification of their DNA. The study was performed using Cryptosporidium parvum oocysts as a model although the principle should be applicable to other organisms. Validation was performed with defined mixtures of live and heat-killed oocysts and by exposing oocysts to a heat stress gradient. The method correctly indicated increasingly lower proportions of intact cells with increasing temperatures. When comparing the loss of membrane integrity of UV-killed (40 mJ cm À2 ) oocysts during storage in nonsterile tap water, results suggested that integrity declines slowly (over weeks) and at a rate comparable to non-UV-exposed oocysts. For all experiments, the amplification of longer DNA sequences was found beneficial. In the UV experiment, longer amplicons revealed not only higher sensitivity in excluding membrane-damaged oocysts, but also in excluding DNA with UV-induced damage.
BACKGROUND: In this work, photochemical treatment (UV/H 2 O 2 ) of a municipal secondary effluent was studied to assess its suitability for preparing water for reuse. Ten water reuse criteria obtained from the legislation of eight countries were used as indicators of water quality. Effluents from the municipal wastewater treatment plant (WWTP) of Gavà-Viladecans (Barcelona, Spain) were subjected to UV/H 2 O 2 treatment with low H 2 O 2 concentration ([H 2 O 2 ] o = 5 mg L −1 and UV fluence = 8.04 mW cm −2 ) and the most common water reuse parameters, such as disinfection indicators, turbidity, total suspended solids and microcontaminant removal (atrazine), were monitored. RESULTS: Treatment inactivated 100% of the disinfection indicators after 5 min. Afterwards, three levels of treatment corresponding to different reuse applications were defined according to the legislation used. In addition, according to the LuminoTox bioassay, oxidative treatment of the secondary effluent favoured the formation of less toxic intermediates. Finally, a study was performed to determine the costs of each reuse condition. CONCLUSIONS: Findings suggest that UV/H 2 O 2 is a suitable method to obtain water of sufficient quality for further reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.