The crystal structure and physical properties of radical ion salts (EDO-TTFBr2)2FeX4 (X = Cl, Br) based on halogen-substituted organic donor and magnetic anions are investigated, including the comparison with the isomorphous compounds (EDO-TTFBr2)2GaX4 with nonmagnetic anions. The crystal structure of these four salts consists of uniformly stacked donor molecules and tetrahedral counter anions, and the Br substituents of the donor molecules are connected to halide ligands of anions with remarkably short intermolecular atomic distances. These salts show metallic behavior around room temperature and undergo a spin-density-wave transition in the low-temperature range, as confirmed with the divergence of the electron spin resonance (ESR) line width. Although close anion-anion contacts are absent in these salts, the FeCl4 salt undergoes an antiferromagnetic transition at TN = 4.2 K, and the FeBr4 salt shows successive magnetic transitions at TN = 13.5 K and TC2 = 8.5 K with a helical spin structure as a candidate for the ground state of the d-electron spins. The magnetoresistance of the FeCl4 salt shows stepwise anomalies, which are explained qualitatively using a pi-d interaction-based frustrated spin system model composed of the donor pi-electron and the anion d-electron spins. Although on the ESR spectra of the FeX4 salts signals from the pi- and d-electron spins are separately observed, the line width of the pi-electron spins broadens under the temperature where the susceptibility deviates from the Curie-Weiss behavior, showing the presence of the pi-d interaction.
The pressure-induced electrical conductivity properties of beta-(BDA-TTP)2I3 have been investigated; the salt exhibits a dramatic change in the conductivity behaviour above ca. 10 kbar and undergoes a superconducting transition with an onset near 10 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.