System scalability is fundamental for large-scale quantum computers (QCs) and is being pursued over a variety of hardware platforms [1][2][3][4][5][6]. For QCs based on trapped ions, architectures such as the quantum charge-coupled device (QCCD) are used to scale the number of qubits on a single device [7,8]. However, the number of ions that can be hosted on a single quantum computing module is limited by the size of the chip being used. Therefore, a modular approach is of critical importance and requires quantum connections between individual modules. Here, we present the demonstration of a quantum matter-link in which ion qubits are transferred between adjacent QC modules. Ion transport between adjacent modules is realised at a rate of 2424 s −1 and with an ion-transfer fidelity in excess of 99.999993%. Furthermore, we show that the link does not measurably impact the phase coherence of the qubit. The realisation of the quantum matter-link demonstrates a novel mechanism for interconnecting QCCD devices. This achieves a key milestone for the implementation of modular QCs capable of hosting millions of trapped-ion qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.