ABSTRACT:Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.
Commission II, WG II/3 KEY WORDS: Kriging methods, Mobile GIS, natural hazard, estimation of damage, crisis scenario. ABSTRACT:In the paper an example for the application of kriging methods to estimate damage to buildings in crisis scenarios is introduced. Furthermore, the Java implementations for Ordinary and Universal Kriging on mobile GIS are presented. As variogram models an exponential, a Gaussian and a spherical variogram are tested in detail. Different test constellations are introduced with various information densities. As test data set, public data from the analysis of the 2010 Haiti earthquake by satellite images are p reprocessed and visualized in a Geographic Information System. As buildings, topography and other external influences cannot be seen as being constant for the whole area under investigation, semi variograms are calculated by consulting neighboured classified buildings using the so called moving window method. The evaluation of the methods shows that the underlying variogram model is the determining factor for the quality of the interpolation rather than the choice of the kriging method or increasing the in formation density of a random sample. The implementation is completely realized with the programming language Java. Thereafter, the implemented software component is integrated into GeoTech Mobile, a mobile GIS Android application based on the processing of standardized spatial data representations defined by the Open Geospatial Consortium (OGC). As a result the implemented methods can be used on mobile devices, i.e. they may be transferred to other application fields. That is why we finally point out further research with new applications in the Dubai region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.