A 3-D computational fluid dynamics (CFD) model was developed to simulate the friction stir welding of 6-mm plates of DH36 steel in an Eulerian steady-state framework. The viscosity of steel plate was represented as a nonNewtonian fluid using a flow stress function. The PCBN-WRe hybrid tool was modelled in a fully sticking condition with the cooling system effectively represented as a negative heat flux. The model predicted the temperature distribution in the stirred zone (SZ) for six welding speeds including low, intermediate and high welding speeds. The results showed higher asymmetry in temperature for high welding speeds. Thermocouple data for the high welding speed sample showed good agreement with the CFD model result. The CFD model results were also validated and compared against previous work carried out on the same steel grade. The CFD model also predicted defects such as wormholes and voids which occurred mainly on the advancing side and are originated due to the local pressure distribution between the advancing and retreating sides. These defects were found to be mainly coming from the lack in material flow which resulted from a stagnant zone formation especially at high traverse speeds. Shear stress on the tool surface was found to increase with increasing tool traverse speed. To produce a "sound" weld, the model showed that the welding speed should remain between 100 and 350 mm/min. Moreover, to prevent local melting, the maximum tool's rotational speed should not exceed 550 RPM.
Defects associated with friction stir welding of two steel grades including DH36 and EH46 were investigated. Different welding parameters including tool rotational and tool traverse (linear) speeds were applied to understand their effect on weld seam defects including microcracks and voids formation. SEM images and infinite focus microscopy were employed to identify the defects types. Two new defects associated with the friction stir welding process are introduced in this work. The first defect identified in this work is a microcrack found between the plunge and the steady state region and attributed to the traverse moving of the tool with unsuitable speed from the plunge-dwell to the steady state stage. The tool traverse speed has recommended to travel 20 mm more with accelerated velocity range of 0.1 from the maximum traverse speed until reaching the steady state. The maximum recommended traverse speed in the steady state was also suggested to be less than 400 mm/min in order to avoid the lack in material flow. The second type of defect observed in this work was microcracks inside the stirred zone caused by elemental precipitations of TiN. The precipitates of TiN were attributed to the high tool rotational speed which caused the peak temperature to exceed 1200°C at the top of the stirred zone and based on previous work. The limit of tool rotational speed was recommended to be maintained in the range of 200-500 RPM based on the mechanical experiments on the FSW samples.
The wear issue of a polycrystalline boron nitride (PCBN) tools during the friction stir welding of two grades of steel, DH36 and EH46, was studied. Two welding traverse and tool rotational speeds were used when welding the DH36 steel. A low tool speed (200RPM, 100 mm/min) and a high tool speed (550RPM, 400 mm/min) were denoted by W 1D and W 2D , respectively. Nine welding conditions were applied to the welding of EH46 steel plate including seven plunge/dwell trials (W 1E-W 7E) and two steady-state trials (W 8E and W 9E). SEM-EDS and XRD tests were applied in order to reveal the boronitride (BN) particles inside the welded joints, and the percentage (%) of BN was calculated according to the standard quantitative metallographic technique. The findings showed that tool wear increases when the tool rotational speed increases as a result of binder softening which is a function of the peak temperature (exceeds 1250°C) at the tool/workpiece interface. When considering the EH46 steel trials, it was found that an increase in the tool traverse speed in friction stir welding caused a significant tool wear with 4.4% of BN in the top of the stirred zone of W 9E compared to 1.1% volume fraction of BN in W 8E which was attributed to the higher thermomechanical action on the PCBN tool surface. Tool wear was also found to increase with an increase in tool plunge depth as a result of the higher contact between the surface of friction stir welding tool and the workpiece.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.