Software Vulnerability Prediction (SVP) is a data-driven technique for software quality assurance that has recently gained considerable attention in the Software Engineering research community. However, the difficulties of preparing Software Vulnerability (SV) related data remains as the main barrier to industrial adoption. Despite this problem, there have been no systematic efforts to analyse the existing SV data preparation techniques and challenges. Without such insights, we are unable to overcome the challenges and advance this research domain. Hence, we are motivated to conduct a Systematic Literature Review (SLR) of SVP research to synthesize and gain an understanding of the data considerations, challenges and solutions that SVP researchers provide. From our set of primary studies, we identify the main practices for each data preparation step. We then present a taxonomy of 16 key data challenges relating to six themes, which we further map to six categories of solutions. However, solutions are far from complete, and there are several ill-considered issues. We also provide recommendations for future areas of SV data research. Our findings help illuminate the key SV data practices and considerations for SVP researchers and practitioners, as well as inform the validity of the current SVP approaches.
Given programming languages can provide different types and levels of security support, it is critically important to consider security aspects while selecting programming languages for developing software systems. Inadequate consideration of security in the choice of a programming language may lead to potential ramifications for secure development. Whilst theoretical analysis of the supposed security properties of different programming languages has been conducted, there has been relatively little effort to empirically explore the actual security challenges experienced by developers. We have performed a large-scale study of the security challenges of 15 programming languages by quantitatively and qualitatively analysing the developers' discussions from Stack Overflow and GitHub. By leveraging topic modelling, we have derived a taxonomy of 18 major security challenges for 6 topic categories. We have also conducted comparative analysis to understand how the identified challenges vary regarding the different programming languages and data sources. Our findings suggest that the challenges and their characteristics differ substantially for different programming languages and data sources, i.e., Stack Overflow and GitHub. The findings provide evidence-based insights and understanding of security challenges related to different programming languages to software professionals (i.e., practitioners or researchers). The reported taxonomy of security challenges can assist both practitioners and researchers in better understanding and traversing the secure development landscape. This study highlights the importance of the choice of technology, e.g., programming language, in secure software engineering. Hence, the findings are expected to motivate practitioners to consider the potential impact of the choice of programming languages on software security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.