The primary objective was to determine pre- and postweaning calf physiological responses to increased Cr supply under high ambient temperatures. In a randomized complete block design, 24 neonate Holstein calves (BW=41.5+/-1.9 kg) were grouped based on sex and randomly assigned to 3 treatments within each group. Treatments included either no supplemental Cr (control), 0.02 mg of supplemental Cr/kg of BW0.75, or 0.04 mg of supplemental Cr/kg of BW0.75. The average temperature-humidity index was 77 during the study. Chromium was provided as a commercial product in whole milk for preweaning calves and in a starter concentrate for postweaning calves. Calves were weaned at 1 kg of daily calf starter intake lasting for 6 consecutive days. A glucose tolerance test was conducted on d 25 postweaning. Treatments had no effects on preweaning dry matter intake, feed conversion ratio, average daily gain, and weaning age. Chromium decreased dry matter intake in postweaning calves; however, it did not affect growth and feed conversion ratio. Chromium lowered respiration rate at wk 5 without affecting fecal score and rectal temperature. Preweaning serum cortisol concentrations were altered by a 3-way interaction of Cr dose with calf sex and age. Preweaning serum glucose showed week-dependent increases by Cr. Serum insulin, urea, albumin, total protein, triiodothyronine, and thyroxin concentrations through weaning were not affected. The increasing Cr doses caused quadratic declines in serum thyroxin on d 21 postweaning, whereas blood triiodothyronine declined only with the higher Cr dose. Serum NEFA remained unchanged, but BHBA decreased by Cr in male calves on d 21 postweaning. The glucose tolerance test revealed linear reductions in area under insulin curve between 0 to 90 and 0 to 120 min after glucose infusion, suggesting improvements in peripheral insulin efficiency. Sex-dependent responses to Cr were observed for serum total protein and albumin concentrations at 21 d postweaning. Overall, results indicate that in summer, increased dietary Cr supply can benefit postweaning insulin metabolism, alter preweaning blood cortisol and glucose levels, and reduce respiration rate and may have only minor effects on calf growth.
Recent studies demonstrated a high antioxidant capacity for pomegranate components due to their rich bioactive compounds, such as conjugated fatty acids and phenolics. The objective of the present study was, therefore, to assess whether pomegranate seed or pomegranate seed pulp (peel + seed) supplementation could be effective to improve antioxidant status, and hence metabolic profile and performance in periparturient dairy cows. After a 1-wk pretreatment period, Holstein cows (primiparous n = 12, multiparous n = 18) were assigned to 3 dietary treatments from 25 d before expected calving through 25 d postcalving. The dietary treatments included (1) control (CON); (2) diet supplemented with pomegranate seeds (PS; 400 g/cow per day); and (3) diet supplemented with pomegranate seed pulp (PSP; 400 g of seeds/cow per day + 1200 g of peels/cow per day). Compared with CON, supplementation with either PS or PSP had no effects on dry matter intake, rumen fermentation, and plasma concentrations of cholesterol, total protein, globulin, and aspartate amino transferase, but enhanced plasma total antioxidant activity, and lowered triacylglycerol, free fatty acids (FFA), and β-hydroxybutyrate at both pre-and postpartum periods. Plasma concentration of glucose, albumin, malondialdehyde (MDA) and blood superoxide dismutase (SOD) activity were not affected by dietary treatments at prepartum, whereas SOD activity increased and glucose, albumin, MDA, and FFAto-albumin ratio decreased by feeding both by-products at postpartum period. In contrast to PS, supplementing PSP resulted in a greater decrease in plasma glucose and triacylglycerol concentration and higher increase in SOD activity. Energy-and fat-corrected milk yields were higher in cows fed PSP diet compared with those fed CON or PS diets, but content of milk fat, protein, and lactose were similar across the dietary treatments. These findings indicated that dietary pomegranate byproducts supplementation, in particular PSP, could improve antioxidant status, which was associated with a decline in lipid oxidation (FFA and β-hydroxybutyrate) and peroxidation (MDA) and an enhancement in glucose utilization as well as fat-corrected milk yield.
This study investigated physiological effects of pistachio by-products silage (PBPS) substituted in Holstein male calves diets and its effects on the growth performance. Twenty-four Holstein male calves (4-5 months of age and 155.6 ± 13.5 kg BW) were randomly assigned to one of four experimental diets (n = 6); contained 0%, 6%, 12% and 18% of PBPS (DM basis) respectively. During a 6-month experiment, dry matter intake (DMI) and weight gain were recorded and blood and urine samples were collected at different times. Results showed that mean DMI was not affected by different levels of PBPS in diets. But the calves fed 6% PBPS had the highest average daily gain (p < 0.05) and the lowest feed conversion ratio (p < 0.05). The calves fed 12% and 18% PBPS had lower albumin, white blood cell, haemoglobin and packed cell volume (p < 0.05) than those fed other diets. However, other serum metabolites, complete blood count (CBC), insulin and liver enzymes were not affected by the experimental diets. The long-term feeding of PBPS at different levels had no significant effect (p > 0.05) on pH, specific gravity, the number of white and red blood cells and epithelial cells count in urine. The animals did not show any symptom of illness or toxicity during the experimental period and all of the blood and urine parameters were in a normal range. It was concluded that substitution of PBPS up to 18% of the total diet that provide up to 18.2 g/kg DM total tannin had no adverse effects for Holstein male calves.
Feed intake and feeding behavior of dairy cows fed diets that varied in fat supplementation and forage:concentrate (F:C) ratio were investigated. Eight multiparous Holstein dairy cows were used in a replicated 4x4 Latin square experiment with 21-d periods. Treatments were 1) no supplemental fat and 34:66 F:C ratio; 2) 2% hydrogenated palm oil and 34:66 F:C ratio; 3) 2% yellow grease and 34:66 F:C ratio; and 4) 2% yellow grease and 45:55 F:C ratio. Cows were fed ad libitum twice daily as total mixed ration with free access to water. Dry matter intake (DMI) was not affected by fat supplementation regardless of fat source, whereas increased F:C ratio (from 34:66 to 45:55) lowered DMI by 7.5%. Meal interval, eating rate, and meal size were lower for cows fed yellow grease, and eating rate was less for cows fed the 45:55 F:C ratio diet. Chewing activity was not affected by fat supplementation, but was greater for cows fed the 45:55 F:C ratio diet. Results suggest that supplementation of 2% hydrogenated palm oil or 2% yellow grease had little effect on DMI and chewing behavior of Holstein dairy cows fed a 34:66 F:C ratio diet. The 2 fat sources can replace each other, depending on the availability or cost. Results also showed that DMI and chewing activity can be effectively manipulated by changing the F:C ratio of diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.