This paper presents a novel methodology to autotune an Unscented Kalman Filter (UKF). It involves using a Two-Stage Bayesian Optimisation (TSBO), based on a t-Student Process to optimise the process noise parameters of a UKF for vehicle sideslip angle estimation. Our method minimises performance metrics, given by the average sum of the states' and measurement' estimation error for various vehicle manoeuvres covering a wide range of vehicle behaviour. The predefined cost function is minimised through a TSBO which aims to find a location in the feasible region that maximises the probability of improving the current best solution. Results on an experimental dataset show the capability to tune the UKF in 79.9 % less time than using a genetic algorithm (GA) and the overall capacity to improve the estimation performance in an experimental test dataset of 9.9 % to the current state-of-the-art GA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.